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ABSTRACT 

This thesis presents a methodology for incident response to identify anomalies and 

malicious adversary persistence within the networks responsible for the reliable operation 

of modern society’s critical infrastructure. The chapters provide relevant background on 

the historical development and function of industrial control systems (ICS) and their 

unique security issues. The study of public technical data from intrusions into control 

systems produces a set of known adversary tactics for incorporation into the 

methodology. This work further documents the development of a repeatable technique to 

collect digital forensic artifacts from production control systems that is compatible with 

the strict operational constraints of these critical networks. The technique is then applied 

with a proof-of-concept host- and network-based toolkit for incident response that is 

tested against real-world data. The goal of the methodology and the supplementary 

toolkit is to elicit valuable, previously-unavailable findings with which to assess the 

scope of malicious intrusions into critical ICS networks. 
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I. INTRODUCTION 

A. BACKGROUND 

Throughout history, malicious attackers have targeted critical infrastructure assets 

that provide nations with essential services. Around 600 BC, Solon of Athens 

contaminated the water supply for the town of Cirrha, allowing Athens to swiftly conquer 

the town while the Cirrhaens were violently ill [1]. Two thousand six hundred years later, 

Vitek Boden of Brisbane maliciously released thousands of gallons of raw sewage into 

waterways of Maroochy Island, causing significant financial and economic damages and 

forcing the residents to relocate [2], [3]. In both cases, a single malicious actor obtained 

unauthorized access to critical infrastructure assets and, prior to detection, caused severe 

physical consequences. Now critical infrastructure systems are more susceptible to 

malicious attacks than ever before.  

The reliable operation of modern society’s critical infrastructure depends on 

industrial control systems (ICS), the embedded software systems that allow an operator 

or device to monitor and control industrial processes. These automation systems are 

ubiquitous and heterogeneous; they were designed with much implicit trust and are not 

very compatible with most modern security solutions. In 2010, Stuxnet demonstrated that 

traditional network protections like segmentation and intrusion detection systems (IDS) 

alone are insufficient in securing control systems [4]. Insecurity of these devices can lead 

to severe consequences and malicious hacking tools can be effective without much 

difficulty to an attacker. To successfully leverage these tools, an adversary must access 

the trusted network, leaving specific forensic artifacts and indicators of ICS malicious 

activity. 

B. MOTIVATION 

An ICS cyber incident response process is not well developed and we lack tools 

built specifically for identifying current or historical adversary presence within the 

critical systems domain. Few published efforts reveal actionable technical solutions for 

ICS security practitioners and none focus on reliably identifying malicious, persistent 
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access within live data from production ICS devices. The primary motivation for this 

thesis was based on technical gaps observed and reported [5] during the course of ICS 

security assessments and cyber incident response. 

Previous studies have outlined the need for forensic collection abilities within the 

ICS environment. The Department of Homeland Security (DHS) Industrial Control 

System Cyber Emergency Response Team (ICS-CERT) has concluded that traditional 

forensic tools are not suitable for use in ICS networks [6]. ICS-CERT provides a high-

level strategy for forensics, makes the case for having an incident response capability, 

and presents a breakdown of what is different about ICS systems. However, the  

ICS-CERT best practice documents only recommend that the capability should be created 

but the papers do not offer specific tools and techniques to implement incident response. 

Some research has posited that live forensics on automation networks is feasible; 

however no specific adversary identification techniques have been provided and  

no available forensic toolkits are available that have been designed for use on ICS 

networks  [7]. 

C. PROBLEM STATEMENT 

Critical infrastructure owners and operators are poorly equipped to discover and 

respond to intrusions into ICS networks. Effective, compatible tools do not exist to 

reliably extract the necessary technical data to analyze ICS environments with modern 

incident response techniques [7]. Adversaries construct surreptitious pathways to their 

target systems that provide persistent access for reconnaissance and future malicious 

activity. These adversary persistence mechanisms often remain undetected for significant 

periods of time. Security teams require a repeatable, tailored response methodology 

employing host and network data collection and analysis techniques to identify malicious 

pathways and adversary presence on ICS networks. The methodology and supplementary 

toolkit within this thesis represent a step toward addressing that need. 
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D. APPROACH AND LIMITATIONS 

This thesis proposes a structured methodology to identify malicious activity by 

using host-based forensics and network analysis to identify anomalous client-side attack 

vectors during ICS assessments and incident response. 

1. Scope 

This thesis will cover analysis of control systems that respond to command-line 

forensic interrogation techniques and that communicate over accepted, interpretable ICS 

protocols. It will not cover embedded device firmware extraction or offline drive image 

analysis within the host-based methodology. ICS field devices will be discussed, but 

direct input/output (I/O) protocols and serial communication are not. This thesis also does 

not cover response actions should adversary presence be detected, nor disaster recovery, 

although specific case-by-case suggestions will be made. 

2. Environment and Data Availability 

To develop the most robust and reliable methodology, real data from ICS 

networks will be used in this study. Some experimentation may be conducted through the 

course of regular assessments and incident response with critical infrastructure asset-

owner approval. Multiple regulations protect disclosure of this data; anonymized data 

will be used when possible, to include host-based artifacts and scrubbed ICS network 

traffic. Additional experiments will be conducted within a closed network that replicates 

real ICS architectures. 

E. THESIS ORGANIZATION AND CONTRIBUTIONS 

Chapter II provides background on ICS systems and security. Chapter III contains 

technical case studies of relevant cyber incidents. Chapter IV describes a methodology 

for identifying malicious activity. Chapter V presents the experiments and findings of this 

study. Chapter VI provides a summary and recommends areas for future work. 
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II. BACKGROUND 

A. INDUSTRIAL CONTROL SYSTEMS 

The reliable operation of modern society’s critical infrastructure depends on the 

proper functioning of industrial control systems. These vital systems are widely 

implemented across all infrastructure sectors to automate large industrial processes. 

Components of ICS networks are designed to allow embedded logic to control a 

process efficiently without constant human intervention, and thus these components have 

specific roles and constraints to operate as low-level building blocks for industrial 

automation. 

1. Industrial Control Systems History 

In 1959, a Texaco refinery in Port Arthur, Texas installed the first ICS device in 

history, a Thompson Ramo Wooldridge RW-300 direct control process computer [8]. 

Control systems were originally designed to monitor and control industrial processes in 

complete isolation, much like server mainframes were initially configured. One central 

master unit provided all computing, control, and monitoring functionality, quietly 

executing simple instructions or ladder logic [9]. Fault tolerance was achieved through 

complete system redundancy: A duplicate ICS master unit provided all functions of the 

original and monitored the primary ICS system’s operation. If the secondary system 

detected a fault, it commandeered all operations. Vendors continued to follow this 

mainframe architecture configuration for ICS systems through the 1960s and continuing 

into the early 1980s, installing unique systems with proprietary protocols as automation 

technology matured. 

As personal computer (PC) costs became less prohibitive and Local Area 

Network (LAN) technology was embraced for business networks in the late 1980s, 

individual computers began to replace static ICS components which enabled distributed 

functionality and processing across multiple control systems [9]. Data historians and 

human-machine interfaces (HMIs) were implemented not as standalone systems but as 

vendor-specific proprietary software on specialized personal computers. The data 
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historian is a database that contains a history of the state of a process-control system [10]. 

HMIs still provide the graphical user interface (GUI) front-end for operators today and 

continue to be one of the few human-to-machine touchpoints in the largely automated 

control environment. These computer-based processes ran modified versions of common 

operating systems and were generally vendor-provided systems, with only the vendor 

able to provide upgrades and system maintenance. As a result of the newly distributed 

architecture, the ICS domain no longer required full-time redundant failover systems 

because the PC-based ICS systems could share the operations load of failed components. 

In the late 1990s, vendors started to embrace commercial off-the-shelf computer 

systems and networking hardware. These vendors began to adapt their legacy proprietary 

protocols for field devices so that the systems could communicate over the Internet 

protocol suite (TCP/IP). The last section of this chapter examines ICS protocols more 

comprehensively. Around this time, Microsoft Windows became the operating system of 

choice for HMIs, engineering workstations, and several ICS servers. Vendors used old or 

modified versions of Windows that, once initially tested for compatibility with vendor 

equipment, were rarely updated. 

These newly networked and communicating field devices, like remote terminal 

units (RTUs) and programmable logic controllers (PLCs), allowed for customized 

implementations. RTUs are field devices that transmit telemetry data (information that is 

collected at remote or inaccessible points) to master systems. RTUs also accept 

commands from those master systems to control connected objects. PLCs are also field 

devices and they execute a wide array of programmable functions such as vibration 

monitoring, catalyst loading, area monitoring, and product loading/unloading. PLCs 

generally execute ladder logic but now can run higher level programming languages like 

C++; they offer the lowest-level code before reaching physical systems. With the 

introduction of these field devices, the ICS component manufacturers enabled the system-

integrators and critical infrastructure companies to make their own modifications and 

leverage their existing network infrastructure. Companies have continued to develop 

networked ICS architectures that allow for streamlined performance tracking, accurate 

billing, and off-site backup capabilities, despite the growing security concerns that this 
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interconnection has introduced. This fully distributed and networked architecture is 

necessary for industrial applications that require distributed monitoring points, such as 

electric power transmission and distribution, oil and gas pipeline and production 

operations, and water utility operations. 

The centralized consolidation, processing, and management of the field devices 

spawned another system term “SCADA” which is often incorrectly used to represent  

the larger set of ICS components. Supervisory control and data acquisition (SCADA) 

systems extend the capabilities of an automated system so that it can be monitored  

and even controlled from a remote location [11]. The implementation of SCADA systems 

allows for the control of industrial processes across widespread geographical  

locations and facilitates the fetching and presentation of current data values to a human  

operator [12]. 

2. Industrial Control Network Composition 

All automation components that have been developed over the past fifty years 

(SCADA, HMIs, RTUs, and PLCs) are implemented in some form in most ICS network 

configurations. SCADA systems continue to manage very large-scale processes at 

multiple sites and over large distances. HMIs are the devices which present process data 

to their human operators, who control and monitor the processes. Some common HMIs in 

industry include Wonderware, Siemens WinCC, Rockwell RSView, and Areva’s e-terra 

[10]. RTUs interconnect all the sensors in the process and also convert those sensor 

signals to digital data, which is routed to the SCADA system. PLCs are field devices that 

are cheap, flexible, and highly-configurable. When combined within an industrial control 

network, these devices retain features of the individual system, leading to unique, 

expensive configurations that have the functionality and weaknesses of the legacy 

equipment. 

ICS components can be interconnected with a variety of mediums. Direct-wiring 

is common for intra-facility connections. Microwave communications backbones are very 

frequently used between facilities, especially in oil and natural gas pipelines, but fiber 

optic inter-facility deployments are becoming more common. Both spread-spectrum and 
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narrow-band radio are used to connect remote ICS components, however dial-up or 

cellular modems continue to provide connection to these systems. 

As explained above, there are many components and countless possible 

configurations. Attempting to broadly capture several possible ICS network architectures 

produces a complex diagram, such as Figure 1. 

 

Figure 1.  General ICS Network Composition Diagram, from [6] 

While this is helpful for understanding the complexities of these systems, a more 

abstracted model can be used to encapsulate the myriad of components and 

configurations. Researchers introduced an abstracted ICS architecture, shown in Figure 2, 

which identifies the key functions within the ICS domain [10]. 
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Figure 2.  Abstracted ICS Network Diagram, from [10] 

At the top right of Figure 2, the traditional IT network, which hosts the corporate 

network and controls site manufacturing operations, is interconnected to the rest of the 

ICS network by one of several domain-interconnection methods discussed in the next 

subsection. Inside the firewall in Figure 2, the control center network houses the 

supervisory services that reside on the engineering workstation, SCADA input/output 

(I/O) server, and the HMI. These supervisory control systems connect using ICS 

protocols over Ethernet to the field devices such as PLCs or RTUs that are often located 

at distributed sites. The field devices receive commands from the supervisory systems 

that instruct the field devices to subsequently control or acquire data, often over direct 

I/O, from the physical ICS assets like mechanical valves, circuit breakers, voltage 

regulators, digital temperature sensors, or other smart devices. The data acquired from the 

physical ICS assets is transferred from the PLCs and RTUs to a central control center 

where it is displayed to the operator using an HMI. 
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3. ICS Domain Interconnection Methods 

In addition to the distribution and communication paths between ICS components, 

there are often additional network interconnections between the traditionally isolated ICS 

domain and the corporate network. These interconnections are introduced for a variety of 

reasons. The ICS network contains valuable information for business applications, such 

as billing and financial data, equipment trending, and operational reports. 

Interconnections to external networks may have been introduced to allow for remote 

vendor support or, in the case of the inter-control center communications protocol 

(ICCP), for utilities to share electrical power status for grid stability [14]. Remote access 

technology allows for access to corporate software from field locations and provides 

capability to manage devices that are difficult to access. 

Dedicated lines are expensive, while the Internet is cheap and pervasive. 

According to the National Institute of Standards and Technology (NIST), “widely 

available, low-cost Internet protocol (IP) devices are now replacing proprietary solutions, 

which increases the possibility of cybersecurity vulnerabilities and incidents” [15]. Low 

cost and easy-to-install-and-maintain wireless connectivity has been added to field 

devices, allowing for the bypass of the physical security boundary and direct connection 

of field devices to the Internet. 

ICS inter-domain networking can be architected using a variety of methods, such 

as explicit direct connections, firewall-controlled connections, demilitarized zone (DMZ) 

only connections, or data diodes. Direct connections can be hard to trace as they are 

constructed by employees or vendors uniquely for the site, usually with standard 

protocols such as secure shell (SSH), Telnet, file transfer protocol (FTP), virtual private 

network (VPN), or with dial-up connections. This means that the direct connections may 

not be known to the security team. Firewalls and access control lists (ACLs) are often 

used for this interconnection and only allow certain types of connections; but the 

software for them provides only limited support for ICS protocols. DMZs are common 

with these interconnections; however they should not be constructed to have access to the 

Internet like traditional web server DMZs. When properly implemented, isolated 

networks can communicate with the DMZ but not with one another, making the DMZ 
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good for storage servers such as databases and data historians. Data diodes enforce 

unidirectional network flow, making them ideal for the ICS environment, but they do not 

allow for acknowledgement or response and thus are not fully compatible with the 

transmission control protocol (TCP). This means that data diodes, although difficult to 

implement with many protocols, can address a limited set of inter-domain communication 

needs. Regardless of interconnection type, a single control such as a DMZ, firewall, or 

data diode cannot provide sufficient defense alone. Since there are no guaranteed 

defenses for business networks and almost all are interconnected with ICS networks in 

some way, business network incidents can intentionally or collaterally affect ICS 

networks. 

It is believed that, in 2013, part of the Austrian and German electric power grid 

almost failed due to a single misconfigured ICS network interconnection when a status 

request command packet, sent from a German gas company as a test of their new 

equipment, made its way onto an Austrian energy power control and monitoring network 

[16]. Once on the Austrian ICS network, the message generated thousands of reply 

messages and flooded the control network. In order to resolve the self-inflicted 

distributed denial-of-service (DDoS) incident prior to power outages, a portion of the 

monitoring and control network had to be isolated and disconnected [16]. Thus, it is clear 

that not only the interconnection medium must be understood but also the communication 

protocols used by the ICS devices. 

4. ICS Communication Protocol Inspection 

Since the development of ICS technology was vendor-driven with a wide variety 

of competing hardware, software, and capabilities, the communication technology was 

similarly developed in a loose, ad-hoc fashion and lacked a central standards body. The 

resulting list of communication protocols include Modbus and the distributed network 

protocol revision 3 (DNP3) as well as hundreds of proprietary protocols like ANSI 

X3.28, CDC Types 1 and 2, Conitel 2020/2000/3000, DCP 1, Gedac 7020, IBM 3707, 

ICCP, IEC 61850, Landis & Gyr 8979, OPC, Redac 70H, Tejas 3 and 5, TRW 9550, and 
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UCA. In total, there are estimated to be between 150 and 200 different ICS protocols 

[17]. 

Despite the fragmented proprietary protocols and slow adoption rate of new 

technology in ICS, Modbus, DNP3, and the Ethernet industrial protocol (Ethernet/IP) are 

the most-used ICS protocols [18]. The Modbus messaging protocol was developed by 

Modicon in 1979 to establish client-server/master-slave communication between 

intelligent devices, first over serial lines then later incorporating TCP [19] (the TCP suite 

are the most common protocols on the Internet). DNP3 was developed as a set of 

protocols for data acquisition and control equipment communication, and in 2010 the 

Institute of Electrical and Electronics Engineers (IEEE) established DNP3 as the standard 

for electrical power system communications (IEEE 1815) [20]. Lastly, Ethernet/IP was 

originally developed by Rockwell Automation in 2001 but is now managed by the Open 

DeviceNet Vendors Association (ODVA) and is an application-layer protocol that 

implements the common industrial protocol (CIP) over TCP [21]. 

ICS protocols have multiple telemetry schemes such as reporting by exception 

(which is common in Europe), in round-robin communications, or at a time polling 

interval. Most of these protocols are primitive and field devices cannot be reliably 

queried to see what protocols they support. All these factors result in a highly-complex 

forensic and incident response process. There is a recent trend toward routable, industry-

standard protocols that may someday replace these legacy vendor-specific proprietary 

protocols [15]; however the long product life cycle and high cost for replacing ICS 

components means this standardized environment is a long way off. 

Despite their differences, every ICS protocol functions using master-slave 

communication. The master polls for data, controls slave devices, and maintains a 

repository of data. The slaves, transmitting either by polling or reporting by exception, 

respond to master commands. Although all components in the ICS domain are either a 

master or a slave, it is important to note that slaves can have more than one master, and a 

device can be a master in one environment and a slave in another as in a tiered 

architecture. This tiered structure, with a master at a remote site gathering all data for 

transmission to the next hop, saves bandwidth and reduces the poll cycle. Also important 
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to this study is that most modern protocols researched communicate, albeit via simple 

wrappers and often in cleartext, using TCP/IP for subprotocols, which allows for some 

level of passive network traffic parsing. 

B. INDUSTRIAL CONTROL SYSTEMS SECURITY 

As explained in the previous section, ICS design allows operators to interact with 

the control systems at an abstract level, significantly lowering the technical expertise and 

knowledge of the system required to keep the process running. The resulting state of ICS 

network security is that field devices are low capability, designed for performance rather 

than security, and operate on a large number of unique protocols that must all be 

protected equally [17]. ICS systems were built to be highly available machines and 

integrity and confidentiality were afterthoughts. That is, ICS hardware was never 

designed with security in mind because they were originally deployed in isolated 

environments, removed from external networks. As those systems have become 

increasingly connected to the network across much of critical infrastructure, ICS systems 

are more accessible and susceptible to malicious attacks. “Control systems are the 

‘brains’ of the control and monitoring of the bulk electric system and other critical 

infrastructures, but they were designed for functionality and performance, not security. 

Most control systems assume an environment of complete and implicit trust” [23]. 

1. Unique ICS Security Vulnerabilities 

The same control systems that replaced so many human functions, such as 

flipping a switch or turning a knob based on automated thresholds, also introduced a 

range of security concerns. The major vulnerabilities for ICS are in three areas: the 

prevalence of legacy equipment, the requirement for real-time availability, and the 

patching difficulties associated with partially or fully segmented networks. 

a. Legacy Equipment Challenges 

The product life cycle for ICS equipment is considerably longer than traditional 

information technology (IT) systems. 20-year-old systems are common compared to 3-to-

5-year-old systems found in traditional IT networks. Due to the cost of individual 
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components, it is not feasible to replace all insecure legacy equipment and these 

challenges are common across all of critical infrastructure’s ICS deployments. Vendor 

support is limited compared to traditional computers with few support styles and often a 

single vendor supporting many systems. Forensic capabilities are lacking on most ICS 

equipment since field devices do not generally store logs and their alarms and responses 

can be suppressed. 

To communicate in these mixed environments, with both legacy and modern 

equipment, proprietary ICS protocols were modified to be used in IP-based networks. 

The result is already weak protocols transformed into cleartext packets wrapped in 

TCP/IP layers, which has only increased the pre-existing attack surface. With prevalent 

cleartext communications and limited authentication or validation, ICS networks provide 

ample opportunity for tampering, interception, and injection of data. With persistent 

access to the ICS supervisory local area network, an adversary could conduct an 

eavesdropping attack on the SCADA server’s communication with PLCs, since this is 

often in cleartext and could be manipulated. This could enable injected telemetry data, 

adversary knowledge of system events, enumeration of equipment, or loss of market-

relevant information. From a security perspective, most ICS traffic is accepted if 

addresses match and cyclic redundancy checks (CRCs) validate. 

Modern solutions like encryption are often not implemented and frequently are 

not supported within legacy ICS protocols. In fact, the popular Modbus and DNP3 

protocols currently do not support authentication, integrity checking, authorization, or 

encryption. Third-party security solutions may not be applicable since the components 

were designed to support the intended industrial process and the components may not 

have enough computing resources or memory to support the addition of security 

capabilities. The later that security is considered in the development of many devices, the 

more difficult and expensive its security can become. This problem is expected to 

continue for some time, since the long lifespan of ICS components requires that even new 

equipment added to the network will have to be backwards-compatible with technology 

or protocols that are 10-or-more years old [24]. 
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b. Real-time Availability Requirements 

Any solution attempting to address the legacy equipment vulnerabilities must not 

introduce latency or overhead into the network traffic, especially 0% downtime critical 

traffic that must be operational 24 hours a day for 365 days a year. 

An ICS network has minimal tolerance for communication delay or data loss. The 

environment is expected to be available for extended periods of time and to meet strict 

timing requirements [14]. The “flipped CIA triad” is often referenced by ICS security 

experts [25]. Whereas traditional IT systems are built around confidentiality, integrity, 

and availability (CIA triad), in that order, control systems are the opposite. They were 

designed with the requirement that real-time availability comes first, then the integrity of 

the telemetry data, and lastly confidentiality. 

Real-time availability requirements were historically addressed with redundancy 

[25] but full-time redundant backups are no longer the industry standard. Additionally, 

increased competition within multiple critical infrastructure industries and a focus on cost 

control has led to increased asset use with fewer trained staff responsible to maintain the 

systems’ uptime. 

With the same uptime requirements but without fully redundant backups, simple 

IT functions like rebooting may not be acceptable due to process availability 

requirements. The throughput and uptime requirements of these networks create an 

environment where continuous reliable operations will always trump security 

assessments, forensics, and incident response. 

c. Problematic Patching 

ICS components tend to be inadequately patched compared to IT systems. The 

security afforded by any amount of ICS network segmentation is exchanged for the 

ability to easily manage patches, antivirus definitions, and firmware updates. Patch 

management is essential to update or repair components of systems that have identified 

vulnerabilities affecting the validity and integrity of device operation. However, patching 

of ICS software in critical infrastructure is “inconsistent at best and non-existent at 

worst” according to NIST [15]. This is compounded by the lack of vendor support and 
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the difficulty of upgrading within the highly volatile and sometimes unstable 

environment in which control systems reside. Months of planning is often required in 

order to take offline and apply patches to production ICS systems. Critical infrastructure 

asset operators must weigh the planning difficulties and costs of patching ICS systems for 

stable and accurate operations against the possibility of malicious tampering with that 

component. 87 percent of ICS-specific vulnerabilities reported to DHS in 2013 were 

exploitable remotely over the network [26]. Furthermore, even if patches are scheduled 

and applied properly, they can introduce instability into the ICS domain if not thoroughly 

tested. 

This means that a growing number of “forever day” vulnerabilities are being 

discovered in older control systems [27]. These vulnerabilities, unlike zero-day exploits 

where vendors and security firms can deploy patches, exist on the legacy equipment 

described above and can be targeted specifically with the knowledge that they are 

weaknesses on older control systems that are not continually supported. 

2. Consequences of ICS Failure 

NIST states that, “ICS are typically used in industries such as electrical, water and 

wastewater, oil and natural gas, chemical, transportation, pharmaceutical, pulp and paper, 

food and beverage, and discrete manufacturing (e.g., automotive, aerospace, and durable 

goods)” [15]. These systems directly control the processes that operate and stabilize our 

critical infrastructure, including everything from dams and water treatment plants to 

electric power utilities and nuclear generation plants. The failure of control systems can 

directly manifest in the physical world with effects ranging from regulatory non-

compliance to severe physical disasters. 

Since ICS systems are crucial to the operation of the electric grid, their failure 

could lead to blackouts, economic disruption, and loss of life [15]. In the electricity 

sector, instability can lead to cascading outages and loss of communication, especially 

power systems with dynamic and dramatic changes in load. In that scenario, there is a 

complex, multi-step restoration process. First, critical loads like hospitals must have 

power restored, then generation facilities, transmission lines, distribution feeders, and 
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lastly corporate and residential power service. In the oil and natural gas industry, system 

failure can result in fuel shortages with economic impacts and even explosions, causing 

loss of human life or environmental catastrophes. In the water sector, improper treatment 

or contamination of water, release of waste, or reduced pressure to emergency systems 

like fire hydrants are possible consequences. Chemical ICS systems can be tampered with 

resulting in chemical formula manipulation. Even the transportation sector relies heavily 

on ICS networks for control of mass transit, and their failure could lead to train 

derailments or crashes. 

The hardware and software for ICS components is almost exclusively foreign-

owned [29] and there are a limited number of critical asset manufacturers, with long lead 

times required for high-value components. For example, it can take six months to receive 

a replacement for certain transformers. The United States’ critical infrastructure is  

often referred to as a “system of systems” because of the interdependencies that exist  

between its various industrial sectors as well as interconnections between business 

partners [30], [31]. 

The failures of these systems can be very real. In June 1999, the Olympic Pipeline 

Company’s pipeline ruptured causing massive physical consequences, including three 

deaths and multiple additional injuries including hydrocarbon inhalation poisoning [32]. 

The National Transportation Safety Board (NTSB) concluded that the SCADA services 

failed on its single Ethernet backbone and event logs indicated that the SCADA system 

failed to execute the command, partially as a result of database development work being 

done on the SCADA system while it was being used to operate the pipeline, which led to 

the systems non-responsiveness during critical operations [32]. Had the supervisory ICS 

components remained responsive to the commands of the Olympic controllers, the 

controller operating the accident would have been able to initiate actions that would have 

prevented the pressure increase that ruptured the pipeline. 

In August 2003, the northeastern region of the United States and Canada 

experienced a blackout that affected 50 million people due to cascading failures of 

electrical grid operation. While the root cause of the blackout was tree limbs contacting 

transmission wires, it was later determined that a previously unknown software bug in 
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GE Energy’s XA/21 system at FirstEnergy Corporation in Akron, Ohio was partially 

responsible for the initial breakdown when it silently failed and did not trigger the alarm 

system [33]. 

In March 2008, an engineer at the Hatch nuclear power plant installed a software 

update on a computer operating within the plant’s business network. When that corporate 

network computer rebooted, it reset the data on the control system, causing safety system 

to misinterpret the lack of data as a drop in coolant water reservoirs and a plant shutdown 

automatically began [34]. The nuclear plant shutdown took 48 hours to recover. 
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III. CASE STUDY TECHNICAL ANALYSIS 

A. CATEGORIES OF MALICIOUS ACTIVITY 

To identify malicious activity in the ICS domain, it is necessary to review case 

studies of previous intrusions. Due to the limited availability of public data on past ICS 

incidents, this thesis categorizes similar events together to isolate behavioral trends. Past 

malicious activity related to control systems can be assigned to one of three categories: 

custom targeted exploits, commodity malware in the control environment, and 

unauthorized persistent ICS network access. 

1. Custom Targeted Exploits 

This category of malicious activity includes nation-state-sponsored hacking or 

other highly-targeted and well-funded intrusions, often using custom exploits. These 

attacks have targeted PLCs and other ICS field devices and can involve firmware 

tampering or exploiting other device vulnerabilities. Targeted attacks such as those 

sponsored by nation states tend to use zero-day exploits that have not been publicly 

disclosed or patched by the vendor. Historical examples of targeted critical infrastructure 

attacks include the proof-of-concept Aurora exploit, Shamoon, and most notably Stuxnet. 

In early 2003, a marine terminal in Venezuela was the target of attempted 

sabotage. The technical details have not been shared publicly, but it is believed that a 

team of hackers obtained access to the SCADA network of the oil tanker loading 

machinery and overwrote PLCs with an empty program module [16]. The result was an 

eight hour halt of the oil tanker loading process until the backup ladder logic was 

reinstalled on the PLCs. 

In September 2007, DHS demonstrated the feasibility of customized targeted 

attacks on ICS systems with the Aurora exploit [35]. Aurora damaged rotating electrical 

equipment with multiple torque shocks by opening a breaker then closing a generator 

back into the power system out of phase [36]. This electrical attack could be conducted 

locally or remotely using unauthorized access to conduct man-in-the-middle or address 

resolution protocol (ARP) cache poisoning to inject breaker trip commands. Although 
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several mitigation techniques currently exist [37], Aurora proved empirically the ability 

to attack a physical device via the Internet and underscored the critical need to identify 

malicious access to ICS assets. 

In June 2010, a piece of malware was uncovered by researchers from Belorussian 

security firm VirusBlokAda that would eventually become known as the Stuxnet worm. 

Stuxnet exploited four zero-day vulnerabilities and used two compromised digital 

certificates. The malware did not target the PLCs and field devices directly; it exploited 

high-level application software on the controlling Windows-based systems with the 

ability to program PLCs [4]. The PLC rootkit code resided on and was executed on the 

engineering workstation and not the PLC itself [38]. The worm affected Windows 2000, 

Windows XP, Windows Server 2003, Windows Vista, and Windows 7 workstations. In 

addition to probable initial universal serial bus (USB) device infection, Stuxnet spread 

over the LAN using network shares [39]. Researchers have concluded that Stuxnet code 

remained idle for an average of 12.8 days after initial infection before executing, then 

persisted quietly for 26.6 days between subsequent executions [4]. 

Although data deletion attacks have existed since at least 1998, when the CIH 

virus was created to overwrite a portion of the hard disk as well as the computer’s flash 

read-only memory (ROM) [40], the recent resurgence of these attacks has renewed 

concern over this style of attack. In August 2012, the Shamoon data deletion attack 

targeted the world’s largest oil company, Saudi Aramco. ICS-CERT claims that a 

destructive attack similar to Shamoon could just as easily have occurred on ICS networks 

[41] and some reports state that data deletion attacks were executed against Iran’s Oil 

Ministry control systems in Kharg Island around the same timeframe as the Saudi 

Aramco sabotage [42]. Shamoon executes a copy of itself as a scheduled job, entrenches 

itself as a service, drops a malicious driver which is loaded and executed to obtain disk 

access, then overwrites disk data starting with user data then system data and eventually 

the system’s master boot record (MBR). The cyber attack effectively wiped 30,000 

computers from Aramco, disabled some of its internal networks for weeks, and was soon 

spread to other oil and gas firms, such as RasGas [43]. 
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In 2014, the first publicly-released prototype PLC rootkit with multiple payloads 

that can remain embedded in the device’s firmware appeared [44]. The rootkit conducts 

denial of service attacks and overwrites flash memory to make the attack persistent 

through device reboots. Planned future efforts by the researchers include the ability to 

distribute the malicious rootkit to other PLCs using available communication channels 

and adding telemetry data tampering functionality to the rootkit [44]. 

2. Commodity Malware in the ICS Domain 

Malicious activity in the ICS domain can include the intentional or accidental use 

or re-purposing of known malicious software such as crimeware or banking Trojans. 

Even though these exploits and malicious software were not written to target ICS 

systems, commodity malware from traditional systems introduces instability into an 

already volatile ICS domain, with unknown effects on the operation cyber-physical 

systems. Because antivirus signatures exist for much broad-audience malware, the 

detection rate is high and there is more publicly available technical information than for 

the other categories. Often, regulated critical infrastructure entities must report these 

incidents and thus more are disclosed. We describe some representative examples. 

In January 2003, the Nuclear Regulatory Commission (NRC) confirmed that the 

Microsoft Structured Query Language (SQL) Server worm known as the Slammer worm 

infected the Davis-Besse nuclear power plant in Oak Harbor, Ohio. The worm spread 

indiscriminately and infected one of the plant’s contractor computers, which 

consequently bridged a fiber optic connection from their computer to the internal 

SCADA network of the plant [45], bypassing a firewall that was configured to block the 

specific user datagram protocol (UDP) port used for propagation. The worm infected an 

unpatched server in the ICS network and caused enough network congestion to shut 

down the Safety Parameter Display System for nearly five hours. Reporting indicates that 

the Slammer worm also impacted other electricity sector systems [45].  

In August 2003, a variant of the Sobig worm was introduced into the CSX 

Railway headquarters in Jacksonville, Florida. This commodity malware installed 

applications and created backdoors while continuing to spread by infecting e-mail 
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attachments. Although not specifically designed for or targeting the railway systems, the 

worm propagated into the control center causing loss of signaling, dispatch, and other 

related systems. Reporting indicates that Amtrak trains in the area were also affected by 

the malware’s introduction into CSX Railway’s systems. The end result was multiple 

train delays and expensive clean-up costs. 

In August 2005, thirteen United States automobile manufacturing plants operated 

by Daimler Chrysler were shut down when the Zotob worm was introduced into the 

control network. This commodity malware was introduced to the ICS environment 

despite the existence of professionally-installed firewalls and studies of the incident 

concluded that a secondary pathway bridged network zones [46]. The plants’ ICS 

networks remained offline for almost an hour and additional plants in Illinois, Indiana, 

Wisconsin, Ohio, Delaware, and Michigan were also forced down. The outage forced 

approximately 50,000 assembly line workers to cease work and cost Daimler Chrysler an 

estimated $14 million in losses [46]. 

In October 2006, an attacker penetrated the network at a Harrisburg, 

Pennsylvania, water filtering facility [47]. The hacker compromised an employee’s 

business laptop over the Internet and then introduced malware into the water facility’s 

SCADA system using the compromised laptop’s trusted remote access mechanism. The 

intrusion was discovered prior to damage occurring and thus the systems remained stable 

and operating.  

In August 2008, viruses intended to steal passwords and send them to a remote 

server jumped a significant physical air gap and infected laptops inside the International 

Space Station. Although the impacts were minimal, the virus did make it onto more than 

one laptop, suggesting that was spread using internal networking or portable media. 

In early 2012, ICS-CERT provided on-site support at a power generation facility 

where common malware had been discovered in the ICS environment and was likely 

introduced accidentally by an employee’s use of a USB drive to back up control 

configurations. Several machines were likely affected by the incident, including two 

Windows-based engineering workstations, both critical to the operation of the control 
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environment. According to ICS-CERT, “these workstations had no backups and an 

ineffective or failed cleanup would have significantly impaired their operations” [48].  

In October 2012, ICS-CERT responded to an incident in which the Mariposa 

scamming botnet was discovered on ten computers within a power company’s turbine-

control system. This incident was caused when a technician used a USB drive to upload 

software updates during a scheduled equipment upgrade outage. Quarantine and 

restoration procedures at the company resulted in downtime for the impacted systems and 

a delay of the plant restart for three weeks [48]. 

 In January 2014, malicious actors modified the widely-available “Gh0st RAT” 

Trojan and infected the Monju fast-breed nuclear reactor in Tsuruga, Fukui Prefecture 

[49]. RAT stands for remote administration tool and also remote access Trojan. 

Commodity RATs like Gh0st RAT and Shady RAT have been used for intrusions into 

critical infrastructure networks since at least 2009 [42]. Using a webshell hidden within 

an image on a popular media player’s update server, Gh0st RAT was downloaded to one 

of the eight computers in the Monju reactor’s control room [50]. Analysis of the incident 

has revealed that the webshell had been in place since 2011 and the modified Gh0st RAT 

malware was compiled in 2013, indicating that the adversary was patient and planned out 

the intrusion. The webshell redirected users at the Monju plant to another web server 

where a self-extracting compressed archive that contained multiple malicious modules 

was downloaded and various persistence mechanisms were established. Outbound 

command and control traffic was eventually manually observed by on-duty personnel 

while filing paperwork on the system, weeks after initial infection. The harvesting 

module of this malware allowed the compromised machine to be accessed more than 

thirty times in a five-day period and resulted in the pilfering of over 42,000 e-mails, 

meeting materials, Monju re-organization documents, and staff training records stored on 

the machine [49]. This intrusion only added to the troubled history of the Monju nuclear 

reactor and, following the intrusion, the plant was selected for decommissioning. 
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3. Unauthorized Persistent ICS Network Access 

A third category of ICS incident refers to any unauthorized persistent access on 

control center systems or field devices from another network such as from the corporate 

network or the Internet. This is generally accomplished by subverting access controls for 

built-in remote ICS network access solutions, for which malicious use is difficult to 

detect. Interestingly, this category is closest to the official DHS definition of an ICS 

threat, which is “persons who attempt unauthorized access to a control system device 

and/or network using a data communications pathway, either trusted internal users or 

remote exploitation by persons unknown via the Internet” [51]. In fact, between 2001 and 

2006, 70% of security incidents involving ICS networks originated outside of the 

network [52]. 

In 1992, a fired employee hacked into Chevron’s systems in New York and San 

José, California, reconfiguring the emergency alert network so that it would crash [53]. 

The intrusion was not discovered until an emergency occurred at a Chevron refinery in 

Richmond, California and the system could not be used to notify the adjacent community 

of the release of a noxious substance. Network configuration details have not been made 

publicly available to understand if and how the emergency alert network was 

interconnected with ICS devices, but the critical alert system was intended to cover 

twenty-two states and several regions of Canada. The unauthorized tampering resulted in 

a ten-hour system outage [53]. 

In March 1997, a Boston teenager connected his personal computer without 

authorization to a dial-up loop carrier system servicing the Worcester airport and 

subsequently sent a series of commands that disabled it [54]. The teenager’s actions 

altered the integrity of the data and severed communication links to an airport, forcing air 

traffic controllers to rely on manual overrides and backup systems for six hours. 

Additionally, the unauthorized access resulted in the disabling of phone service to over 

600 homes in the area and affected the local weather service and fire department. Most 

notably, the teenager’s access temporarily disabled the radio transmitter that allowed 

aircraft to send an electronic signal to activate runway lights on approach. Information 

from the criminal case indicates that the loop carrier system operated by the telephone 
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company was accessible via modem to allow technicians to quickly change and repair 

service to customers from remote computers. 

In April 2000, Vitek Boden wirelessly operated sewage treatment equipment at 

the Maroochy Waste Water facility in Queensland, Australia using a laptop in his car [2]. 

Over the course of three months, Vitek Boden successfully intruded into the SCADA 

system 46 times, falsifying his network address, sending false data and instructions, and 

disabling alarms that released thousands of gallons of raw sewage into rivers, parks, and 

tourist destinations [2]. The series of unauthorized accesses resulted in residents 

relocating due to the foul smell, the discoloration of the local waterways, over $1 million 

in estimated costs, and substantial loss of marine life [3]. During the subsequent 

investigation, it was discovered that Boden previously worked as an engineer at the 

vendor supplying Maroochy’s ICS components and he was attempting to obtain a 

consulting job to solve the problems he was creating [2]. 

In August 2006, two Los Angeles city employees compromised the network that 

controlled the city’s traffic light system. [55]. The pair disrupted traffic signals on the 

signal control boxes at four critical intersections, resulting in significant backups and 

delays. This particular intrusion was launched prior to a labor protest by city employees. 

In 2009, a 28-year-old disgruntled former IT contractor for Pacific Energy 

Resources remotely hacked into computerized controls that detected leaks on off-shore 

oil platforms off the coast of California [56]. Mario Azar’s unauthorized access resulted 

in the crash of telemetry systems and operational data unavailability. The systems were 

disabled for almost two months before the intrusion was identified. This ICS safety-

component failure caused thousands of dollars of damages for Pacific Energy Resources 

but did not trigger any leaks or physical consequences. 

In November 2011, a hacker who called himself “Pr0f” demonstrated that by 

using the Internet-connected device enumeration tool Shodan, he could access HMIs 

within a South Houston water utility’s ICS network [5]. Pr0f found that the water utility 

was running the Windows-based Siemens Simatic HMI software, a web-based dashboard 

for remote access to their SCADA systems, and was connected directly to the Internet 
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with only a simple three-character password for protection. According to ICS-CERT, this 

is one of countless successful unauthorized ICS network intrusions as a result of the 

exponential growth of Internet-connected ICS systems [48]. 

In May 2013, United States intelligence agencies traced an intrusion into the 

United States Army Corps of Engineers (USACE) National Inventory of Dams (NID) to 

a suspicious IP address [57]. The database contained sensitive details on vulnerabilities of 

the 8,100 major dams across the United States. Although technical details are not 

available to determine the interconnection between this database and the ICS network, 

the malicious user did maintain persistent access to the NID database for at least three 

months [57]. 

In May 2014, ICS-CERT reported that a sophisticated threat actor accessed a 

company’s SCADA server that operated mechanical equipment. The SCADA server was 

directly connected to the Internet via a cellular data connection with no firewall or 

authentication controls in place. The intruder maintained access to the system over an 

extended period of time and connected over hypertext transfer protocol (HTTP) and 

SCADA-specific protocols, although no man-in-the-middle injection or system 

manipulation was observed [26]. In the same May 2014 release, ICS-CERT also 

disclosed that a public utility was compromised by a malicious group that gained 

unauthorized access to the utility’s control systems. The ICS network was configured for 

remote access capabilities over the Internet with password-based authentication which the 

attackers were able to crack with brute-forcing [26]. The public release did not include 

any additional technical data or statements regarding impacts to the utility’s operations, 

but the ICS-CERT report notes that the system owners were previously unaware of the 

insecure configuration and that the targeted systems were likely subject to prior intrusion 

activity. 

B. KEY POINTS AND TRENDS FROM ICS INCIDENTS 

The studied intrusions often started within the business network, or the business 

network was compromised as a reconnaissance point for follow-up intrusions into the 

ICS networks. By compromising the underlying operating systems of the workstations 
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hosting ICS software, adversaries were able to abuse trust relationships between those 

compromised systems’ software applications and ICS hardware. Any action available to 

an ICS system’s legitimate root-level Linux user or more commonly a system-level 

Windows user may also be performed by an adversary without the use of any ICS-

specific knowledge or exploit tools. 

In all studied incidents involving intentional malicious impacts to ICS systems, 

the adversary maintained a presence on the target system and had a communication 

method to communicate orders. In rare cases, malicious access was achieved directly to 

the field devices over radio or other connection method to the endpoints, however the 

majority of incidents involved the compromise of Windows-based supervisory 

workstations that monitor and control field devices. Targeted attacks and non-targeted 

commodity malware events also incorporated early rogue connection to the ICS network 

and thus unauthorized access is a prerequisite for all incident categories. Focused efforts 

to identify attempted or achieved unauthorized ICS network access may provide valuable 

early indication of many types of malicious activity. 

Because availability requirements often prohibit the restarting of supervisory ICS 

machines, less sophisticated methods were required to maintain access to the target 

networks. Unauthorized access generally persisted for a significant amount of time in 

these case studies allowing attack planning and reconnaissance. The relatively simple 

persistent access methods and lengthy undetected malicious access to ICS networks were 

not reliably identified, according to several post-incident analyses, in part due to the 

constraints of auditing these systems and concerns of introducing instability into the 

environment. 

Technical indicators of anomalous access and ICS network compromise have 

been extracted from these incidents’ publicly available technical reports. The incidents 

used malicious methods to target ICS field devices as well as more traditional intrusion 

hacking techniques like establishing external command and control, scheduling tasks and 

modifying the registry to survive reboots, tampering with processes and services, 

implanting files for future action, laterally moving within the network, exploiting 

portable media devices, and abusing trusted channels to obtain and maintain an attack 
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position on critical-infrastructure systems. The spectrum of methods was similar to that 

of attacks on computer systems and networks in general therefore existing effective 

identification techniques should be carefully adapted for use in ICS environments. 
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IV. METHODOLOGY 

A. FRAMEWORK FOR IDENTIFYING MALICIOUS ACTIVITY 

The design of a technique to identify malicious ICS activity requires careful 

planning to obtain unique ICS data sources and collect and analyze that data under the 

strict operational constraints of critical networks. 

1. Framework Overview 

The proposed malicious activity identification methodology consists of collection, 

analysis, and decision components for host-based and network-based ICS artifacts 

(Figure 3). The framework is modeled after modern intrusion detection techniques 

employed in traditional networks [13]; however, these solutions are rarely deployed 

correctly for ICS networks at critical infrastructure sites [15] and most lack ICS protocol 

support as well as the signatures and behavioral-anomaly data necessary to identify ICS 

attacker tactics [7]. The purpose of this technique is to quickly analyze an ICS 

environment’s systems and their communications, attempt to interpret abnormalities with 

a minimal required baseline, and isolate possibly malicious activity and pathways on 

critical networks in support of security assessments and cyber incident response. 

 

Figure 3.  ICS Malicious Activity Identification Methodology 
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Although the goal is the creation of a toolkit that executes this methodology with 

reliable high-confidence output, the approach may need to be conducted manually at first 

and continually refined with automation in mind. 

2. Framework Constraints 

ICS networks require that specific technical constraints be understood and 

adhered to for both host-based and network-based tools. 

Host-based tools are limited to those installed and already available on legacy 

operating systems. There exists no centralized view of system security status to draw data 

from, and field devices do not always store logs. Any security-monitoring commands 

executed on these systems should be run at the lowest priority level to not interfere with 

critical processes. Furthermore, there are temporal challenges with ICS forensic data 

because process and state information is often overwritten at a rate that makes 

meaningful collection unviable or impossible [6]. The unique configuration and 

availability requirements of these systems that were explored in previous chapters 

necessitate the adaptation of all host-based techniques for compatibility and the thorough 

testing of all commands to ensure critical processes will not be interrupted. 

Network-based techniques are constrained by the instability introduced by active 

tools in the environment. Port scanning and automated device interrogation techniques 

can crash ICS hardware by scanning too fast or by sending null or malformed packets. 

With modern SCADA services using internal Web servers, HTTP GET and POST 

requests can cause actual physical actions, so even Web-based automated tools should 

not be used actively on ICS networks. Industry best practices recommend, and a few 

examples in the next section highlight, the importance of remaining entirely passive for 

network traffic analysis. That analysis must also include the highly specialized and often 

proprietary ICS communication protocols. Although minimal “noise” (irrelevant traffic) 

should exist on ICS networks, data volume is an issue because the amount of real-time 

telemetry data and otherwise unrelated traffic can drown out possibly malicious packets. 

Furthermore, ICS domain interconnection methods and some regulator restrictions limit 

the ability to tap critical networks at multiple locations. For these experiments, passive 
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network traffic captures were examined that were collected using a high-capacity switch 

port analyzer (SPAN) port on a router or switch, a method that should be usable on any 

ICS network. 

Several traditional penetration testing techniques can be translated for use on ICS 

networks as shown in Figure 4. For example, instead of running a network port scan that 

sends packets intended to elicit device information that could trigger unexpected results, 

a penetration tester should verify open ports on each host in the environment without 

generating network traffic. This thesis explores eliciting considerably more detailed 

incident response and forensic data from these systems while following similar 

constraints. 

 

Figure 4.  Comparison of IT and ICS Penetration Testing Actions, from [58] 

Accounts exist of security researchers ignoring these constraints. For example, a 

ping sweep was performed on an active ICS network that controlled 9-foot robotic arms 

and a controller for an arm that was in standby mode received the ping sweep and 

abruptly swung around 180 degrees, luckily missing the person nearby [58]. In another 

instance, a ping sweep was performed to enumerate all hosts on an ICS network and it 
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caused an integrated circuit fabrication system to fail, destroying wafers worth $50,000 

[58]. In a third instance, a penetration test at a gas utility locked up the SCADA system 

and the utility was unable to send gas through its pipelines, causing a loss of service to 

customers, for four hours [58]. Lastly, in August 2006, operators at Browns Ferry 

Nuclear plant had misconfigured products from two different vendors, which resulted in 

excessive traffic on the control network. This excessive network traffic resulted in a high-

power, low-flow condition where the recirculating water system could not be properly 

cooled [59]. This event, which took the plant offline for two days and cost nearly 

$600,000 in revenue [59], demonstrated the fragility of these networks when exposed to 

unexpectedly heavy network traffic. These examples are proof of the complex 

requirements of any security assessment or forensic action on conducted on production 

ICS networks. 

B. TOOLKIT SELECTION 

An ideal toolkit requires the hand-selection of the most compatible host- and 

network-based tools capable of collecting and analyzing malicious activity while still 

providing ample ICS network coverage. 

1. Host-based Tools 

To aid stability of hosts, an implementation should focus on agentless built-in 

commands that generate minimal network traffic. Popular toolkits such as Microsoft’s 

Sysinternals require detailed configuration and have not been thoroughly-tested on ICS 

systems, so they are not ideal for widely-applicable solutions. For host-based querying 

for Windows artifacts, only built-in command-line utilities should be used, with an 

emphasis on the Windows Management Instrumentation Command-line (WMIC) tool. 

Special care should be taken to ensure that the toolkit only attempts to query using 

command-line utilities that exist on that hardware’s possibly-modified operating system. 

When possible, scripts should be written for the legacy Microsoft Disk Operating System 

(MS-DOS) 16-bit command.com processor that preceded the 32- and 64-bit cmd.exe 

found on Windows. 
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The implementation of these scripts will be compliant with North American 

Electric Reliability Corporation (NERC) Critical Infrastructure Protection (CIP) 

standards’ scanning policies [60], which ensures that the toolkit can be used at not only 

electrical utilities but at other critical infrastructure sites with ICS systems that are 

subjected to the same scanning limitations. The tools are available on several versions of 

Windows operating systems, including most of those found within ICS environments, as 

illustrated within Siemens Automation documentation for the use of WMIC to 

troubleshoot system patching (Figure 5), representing a small subset of this thesis’ 

planned usage. “Product work-around” documentation from General Electric (GE) shows 

that WMIC is also supported on a range of GE’s platforms including GE’s Proficy data 

historian platform and GE’s Cimplicity HMI platform [61]. References to WMIC can  

be found buried within most major manufacturer’s supervisory ICS system’s 

troubleshooting documentation. While no documentation exists on the use of these tools 

for forensics or live response on control systems, tailoring ICS-compliant queries can 

identify unauthorized access based on real-world malicious ICS activity. 

 

Figure 5.  WMIC usage on Siemens SIMATIC WinCC HMI, from [62] 

These tools can run at user privileges but offer the most functionality when run as 

an administrator. For the research and testing purposes, a new shared administrator 

account with strong authentication was created on every test workstation to centrally 

query the hosts. Documented best practices recommend banner grabbing as a safe activity 

[58] and this WMIC node querying method uses similarly minimal network bandwidth. 

For critical real-world networks, the toolkit can run the commands locally with no 

network traffic with the manual export of results to be collated on a separate closed 

network. 
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2. Network-based Tools 

The experiments used the Bro platform for network-based analysis [75]. It is an 

open-source network solution composed of signature detection, anomaly detection, and a 

programming language designed to work with network traffic. The signature detection 

generates logs for which a protocol analyzer abstracts details in real-time. Alerts can be 

generated based on pre-configured signature and anomaly notification rules. The 

programming language defines the actions the platform takes based on logic and 

structured programming. Fortuitously, the Bro network programming language was 

updated in November 2013 to support protocol parsing of the two most popular ICS 

protocols, Modbus and DNP3. Bro can parse and analyze network traffic and analysis can 

be automated through the creation of customized scripts to identify malicious ICS 

network activity. 

Figure 6 lists the default protocol fields parsed by Bro for Modbus and DNP3. 

Bro’s ability to extract function codes from ICS protocol messages can prove valuable in 

comparing network traffic against ICS protocol conventions. The Modbus and DNP3 

analyzers process significantly more data than that provided in Figure 6, so custom 

scripts can be written to manipulate register addresses, values, and additional payload 

data. The created toolkit should scale in function as future Bro ICS protocol analyzers are 

developed. 

ICS Protocol Data 
Data 
Type 

Modbus 
Field 

DNP3 
Field 

Message timestamp time ts ts 
Connection unique ID string uid uid 
Connection orig&resp host&port record id id 

Message function code string  
fc_request 
fc_reply 

Message failure exception code string exception  
Response internal identification # count  iin 

Figure 6.  Modbus and DNP3 Bro log fields 
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Additionally, several open-source programming libraries such as jQuery and 

jVectorMap can be used to aid in reporting and visual effects for the network-based 

analysis toolkit. 

3. Toolkit Coverage 

Because the most skilled adversaries strive to maintain a minimal footprint, full 

inspection of ICS host and network elements is desirable but time and processing 

constraints, as well as the devices’ operational limitations, make it infeasible at this time. 

Host-based and network-based tools can provide ample coverage of most ICS networks, 

while respecting constraints of device operation and real-time availability. Sufficient 

host-based sampling has been achieved and full population network-based data can be 

processed with this method, limited only by the ICS network operator’s ability to collect 

and store all traffic. 

Host-based tools should be selected to provide very high data-driven, non-

probability judgment and convenience sampling rates. Host-based tools should be used 

locally on compatible hosts with minimal network traffic generated. Special logic should 

be included in the host-based scripts to ensure the stability and compatibility with various 

legacy versions of the Microsoft Windows OS. When possible, all scripts should be 

generated with MS-DOS and Windows 4.x commands, maximizing ICS host coverage. 

The network-based analysis should be completely passive by design to not 

interfere with reliable process control. Analysis should cover the spectrum of systems 

communicating over TCP, UDP, and Internet control message protocol (ICMP) protocols 

on the ICS network, regardless of operating system. Specifically, the network toolkit 

should cover traffic for all hardware including field devices that communicate over 

Modbus TCP and DNP3, widely considered the two most-implemented ICS protocols in 

industry [18]. Support for more ICS network protocols can be extended as time permits.  
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C. IDENTIFICATION OF ADVERSARY TACTICS 

This section details proposed technical identification techniques for adversary 

tactics as observed in the malicious ICS activity case studies. When applicable, host and 

network script excerpts are provided to illustrate usage. 

1. ICS Field Device Anomalous Operations 

In several cases examined, the only indication of malicious access was the 

anomalous operation of the ICS field devices. Stuxnet resided on the WinCC HMI and, 

using a known hardcoded password, modified rotating motor spinning frequencies in 

Siemens S7-315 programmable logic controllers and valve settings in S7-417s. This 

suggests that cleartext protocol data should be examined and ICS protocol datagrams 

should be inspected for known default passwords and other vulnerabilities. Obtaining and 

validating upper and lower field device register-boundary values against site-specific 

expectations and equipment-tolerance values may help identify overclocked or 

maliciously manipulated devices. ICS protocol operations should also be used to 

automatically create a catalog of devices, such as Modbus function code 0x11 and 0x2B 

that query for device details; responses to these packets can be passively inspected for 

field device characteristics. To extract high and low values, the maximum and minimum 

values for each device register should be stored and checked upon single register request, 

single register response, and multiple register request events. One of this study’s Bro 

scripts can access and catalog these register-boundary values from both historical and 

real-time network traffic. The script should capture register-boundary values from 

replayed historical samples then create expected register limits with which to monitor 

real-time traffic, which requires fewer calculations and events. Because the ICS network 

protocol data is passively ingested on network infrastructure SPAN ports, and Bro is 

designed to distribute and manage loads [75], no network latency will be introduced 

when running any network-based scripts on historical or real-time traffic. If too much 

network traffic is aggregated, packets will merely be dropped on the monitored SPAN 

port; both ICS process control and network infrastructure operations will continue 

without degraded or disrupted performance. 
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The analysis of ICS field device register-value ranges requires additional 

information such as the make and model of equipment and what process it may be 

controlling. Organizationally unique identifier (OUI) bits should be extracted from media 

access control (MAC) addresses to assist in fingerprinting devices for both overall 

awareness and for verification of specific ICS hardware limits. A repository of ICS-

specific OUI vendor information and possible field device function has been researched 

and created for this thesis for offline component identification. Unfortunately, Bro 

abstracts network traffic at an early phase of analysis and does not currently allow the 

extraction of MAC addresses from ICS protocol communication. 

To assist, dynamic host configuration protocol (DHCP) traffic within the ICS 

network traffic should be examined for physical addresses, modifying an existing Bro 

policy and further extending it with ARP, DNP3, and Modbus protocol analysis. 

Additionally, the host-based scripts should query each system to extract MAC addresses 

from their local ARP tables for devices with which they have communicated, and from 

any in-range wireless infrastructure (Figure 7). This method should assist in monitoring 

for ARP poisoning as well. Dual-homed devices, those systems that have multiple 

network interface cards, are attractive pivoting targets for malicious attackers, so any 

MAC address with multiple IP addresses should also be identified. 
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Figure 7.  Host-based passive ICS device enumeration batch script 

Since ICS traffic often should be deterministic (the operation of a device should 

be predictable since critical processes rely on predictable outputs for given inputs) the 

network traffic can be compared against ICS traffic conventions to isolate tampering or 

anomalous behavior. This provides a stronger indication of malicious activity than on 

traditional computer systems. One such convention is the hierarchical communication 

where devices communicate one-to-many or master-to-slave. Master and slave roles can 

be easily extracted for IP-based protocols because the source and destination addresses 

for a specific message type imply its role. Communication channels are defined by device 

function so an HMI should only talk to a PLC, RTU or SCADA I/O server and an RTU 

should probably not be sent non-ICS protocol traffic; these should be constant because 

devices are rarely added or removed from the network. Another convention is that ICS 

field device communication is consistent and so, where on traditional IT networks the 

packet timing is influenced by human interaction, the ICS protocol traffic generally 

occurs on set polling intervals. 
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Additional logic should be added into the Bro scripts for ICS field devices to 

check for suspicious functions and operations that require an explicit interactive 

command or reprogramming. Engineers and operators, when presented with this data, 

would know instantly if it was a command that they issued or if it was a possible 

unauthorized injected command. The Bro script should include specific verbiage 

detailing the potential security concern of the ICS field device command transmitted. For 

Modbus, function code 0x7D is issued to initiate firmware replacement. DNP3 code 

0x1B is issued to delete a file and codes 0x0D and 0x0E are issued to restart a device. 

Those commands would be instantly verifiable if detected in live ICS traffic. Less critical 

alerts should also be included in the scripts but require operator analysis to determine if 

they are malicious or if the ICS network is misconfigured. For instance, a Modbus slave’s 

exception code of 0x03 means an illegal data value was received. Since we have 

established that Modbus is hardware-agnostic and not aware of device register limits, this 

exception means that the structure of a query was unexpected. Modbus exception code 

0x0B indicates that a target device failed to respond or may not be present on the 

network. DNP3 uses code 0x21 for an authentication error and 0x82 for an unsolicited 

response, both of which should be extracted by the created scripts, but it will require an 

operator to discern whether the presence of the codes indicates malicious activity or 

device misconfigurations. 

Comparing observed ICS communication against protocol conventions like these 

should allow the identification of malicious persistence without the need for an anomaly-

based learning period. 

2. External Network Communication 

The majority of cases studied included some form of malicious communication to 

external networks. The high signal-to-noise ratio within IP-based ICS networks should 

make the identification of malicious external communication significantly easier when 

compared to traditional enterprise networks. 

All versions of the Mariposa malware use custom UDP datagrams for 

communication, and infected systems may beacon frequently and send encrypted 
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instructions and data across a variety of UDP ports. Hardcoded domain names are used in 

most variants as well. The Monju incident’s malware redirected from the compromised 

streaming media service’s website to another malicious domain and used command and 

control traffic over TCP port 443. The connections were established with malicious 

server testqeasd.tk, so domain name system (DNS) lookups over TCP port 53 would be 

observed [50]. DNS cache, cookies, and the hosts file can be examined for previous 

outbound attempts and may help identify planned routes or dormant malware. Web 

browsers also store typed uniform resource locators (URLs) in various forensic locations, 

such as in HKCU\SOFTWARE\Microsoft\Internet Explorer\TypedURLs for Internet 

Explorer. 

Since this thesis has argued that ICS networks should not connect to the Internet 

directly, all attempted or successful connections to external IP space may be of concern, 

unlike business networks. For instance, both a half-open TCP handshake and a 

connection that has been rejected by an external IP issuing a reset packet to deny it would 

not be considered a connection in most traditional networks. Any external connection 

attempts using ICS protocols are of major concern and they should be prioritized for the 

user of the toolkit to review.  

Figure 8 provides an excerpt from this thesis’ Bro script to categorize potentially 

malicious connections outside of the ICS network. The first function abstracts and 

simplifies the state of every TCP and UDP connection based on the status of its three-

way TCP handshake. Selecting an event-based trigger that captures both attempted and 

successful connections in network traffic can be difficult; however, the second function 

shown in Figure 8 should trigger when a connection’s internal state is about to be 

removed from memory. Every TCP and UDP unique 4-tuple socket pair should reliably 

generate an event at which time the network-based toolkit should apply logic to filter out 

the original, meaningful external connections and their connection statuses. The bottom 

of Figure 8 also displays a portion of the robust ICS port and protocol pairing that should 

be matched to newly-identified external connections. This ICS protocol tagging should 

provide helpful context for determining the security risk of a particular connection since a 



 41

previously-unknown connection may be of more immediate concern if it is 

communicating over an ICS protocol. 

 

Figure 8.  External ICS network communication identification Bro script excerpt  

Passive IP address geolocation can be conducted within this same script using the 

offline MaxMind GeoIPLite database to plot attempted and established connections from 

the ICS network and the protocol used. The geolocation and plotting of external 

connections on a map should help to determine approximately where anomalous traffic is 

bound. This method would assist in distinguishing innocuous connections, like packets to 

several IP-enabled meters within a utility’s service area, from nefarious connections, like 

recurrent unauthorized beaconing to a foreign country’s IP space over ICS protocols. Bro 

scripts can be written to convert and store relevant connection attempts using JavaScript 

object notation (JSON). Formatting processes can be conducted during Bro’s 

initialization and completion to directly write output to a JSON file as shown in Figure 9. 
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This offline JSON data feed should be continuously-updated while also being projected 

onto a world map using the jVectorMap library. 

 

Figure 9.   Bro script variable translation to jVectorMap overlay data 

Not only should external Internet access be disallowed but so should several other 

protocols within the ICS network and ICS DMZ [63]. FTP and trivial file transfer 

protocol (TFTP) are common ICS transfer protocols which use minimal processing 

power that is ideal for limited hardware [15]. Not only are FTP and TFP vulnerable 

services, since cleartext passwords are used for FTP and no login is required for TFTP, 

but they are known to be used by malicious actors. Outbound FTP sessions could indicate 

malicious intellectual property theft, so despite the legitimate use of FTP in some ICS 

networks, any high-bandwidth FTP usage should be identified [64]. Similarly, inbound 

Telnet sessions from the corporate network, simple network management protocol 

(SNMP) versions 1 and 2, and any simple mail transfer protocol (SMTP) or other e-mail 

traffic should be flagged [65]. 

Shamoon’s command and control (C2) traffic was configured to beacon home 

every two hours. The module responsible for sending information about the infection to 

the attacker would send an HTTP GET request including the domain name, number of 

files overwritten, IP address of the compromised system, and a random number [66]. If 

internal web servers are being used for SCADA services, examining irregular HTTP 

properties like user agent strings can help to identify automated attack tools or manually-

performed attacks. Although the logging of requests is unlikely to be enabled for internal 

SCADA servers that use HTTP as a transport protocol, HTTP traffic should be extracted 

and characterized by the network-based toolkit. 
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Depending on the communication methods used between ICS devices, the 

enumeration of IEEE 802.1x wireless access points can detect rogue connections. NIST 

recommends that wireless access points be located on an isolated network with minimal 

connections to the ICS network [15]. Current in-range service set identifiers (SSIDs) 

should be enumerated on ICS hosts since not only has the existence of in-range SSIDs 

been used for previous non-ICS intrusions but in many critical environments there should 

be no wireless access points accessible. Additionally, data can be extracted using the 

“netsh wlan show profiles” command to indicate if a host has previously connected to 

any wireless access points. If run as an administrator, the same command can be modified 

with “key=clear” to list cleartext stored 802.11 wireless passwords, a technique that 

should be provided within this research’s scripts for administrator awareness. 

3. Registry, Startup, and Scheduled Task Persistence 

The Mariposa bot kit found on a turbine control network used a registry startup 

method that works on all Windows versions from all accounts, including limited guest 

users, by modifying the Winlogin registry entries to enable the bot to start at boot [67]. 

The primary malicious module of the Monju plant incident added entries to the  

Windows registry in one of two locations depending on Windows version and  

system architecture. Backdoor keys are placed in the default software classes under 

\InProcServer32\@=expand:”C:\WINDOWS\temp\install.ocx” within HKEY_USERS in 

the registry, allowing the malware package to launch on system startup [50]. Shamoon 

created the TrkSvr service that starts itself with Windows, which may have been 

identifiable by monitoring the drivers set to load during startup. Malicious services can be 

configured to automatically restart after specific service failures using the SC utility, a 

utility that can also be used to query services for this property. 

Comparing the hosts’ registries against each other and also against a clean 

operating system baseline may be achievable in ICS networks, unlike most networks, 

since significantly less software should be installed and user behavior is restricted. In the 

absence of those registry baselines, several common locations are used for malicious 

registry persistence and several specific locations were used by the malware from the ICS 
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case studies. These locations, as well as the “shutdown” key value with a dynamic-link 

library (DLL) loaded, should be checked in the registry. 

The Mariposa malware also overwrote the user’s Desktop.ini file that initializes 

on restart, a file often targeted for persistent access. Placing binaries and batch scripts 

within users’ startup folders is a simple but effective tactic for maintaining persistent 

access. In fact, during the Shamoon incident, attackers employed basic batch scripts to 

assist in data gathering. The relatively low number of users and overall workstations in 

the ICS environment should expedite the checking for these types of plaintext command-

line instruction files. 

Both Stuxnet and Shamoon used the task scheduler to create and then delete tasks, 

a process that should leave forensic artifacts for collection. Shamoon used the task 

scheduler to create At.jobs for privilege escalation to the system account and also to 

periodically run command-and-control modules. The task scheduler was ultimately used 

to execute the wiper modules (system32\dfrag.exe and system32\dvdquery.exe) as well. 

These names were selected from a hard-coded list of binary names to blend in with 

system files. The tasks for Shamoon included logic for execution times, with the 

Triggers/TimeTrigger property of the scheduled task as well as Actions/Exec for the 

explicit command execution. If a high number of legitimate scheduled tasks exist in the 

environment, only those with logic triggers or command-line execution need to be 

examined for suspicious behavior. 

Technical incident data can reveal multiple methods of scheduling Windows tasks 

for both persistence and privilege escalation. It is necessary to check tasks scheduled 

using a variety of services, such as AT jobs, BITSADMIN jobs, and jobs assigned with 

SCHTASKS. To further separate potentially malicious tasks from innocuous 

administrative scheduled jobs, tasks with executable actions, explicit command line 

variables, and logic triggers such as time should be displayed prominently in the script’s 

output. 

Scheduling a task on supervisory systems within ICS networks may also produce 

a log entry with EventID 602 for older versions of Windows or EventID 4698-4702 for 
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Windows 6.0 and up. Systems can also be configured to log Event ID 567 or 4657 when 

registry keys are modified so that a service is started at boot. Querying event logs can be 

processor-intensive and detailed logging is frequently unavailable on ICS hosts; however 

the scripts created for this thesis include relevant command-line search and extraction of 

available event log data. 

4. Process Injection and Hijacking 

Stuxnet replaced a DLL file used by Siemens Step 7 to communicate with PLCs, 

allowing Stuxnet to intercept, manipulate, and replay ICS traffic. While Stuxnet was 

sophisticated malware, cleaning the infection was as simple as disabling or deleting two 

signed driver entries, mrxclas.sys and mrxnet.sys, from the Windows\System32\ 

directory [68]. These files, dropped early on in the infection, are registered to start  

when the system boots. Although it is difficult to check for changed file listings across all 

hosts in the business network, it may be feasible to monitor specific directories on ICS 

systems for malicious libraries intended for DLL search-order hijacking. Anomalous 

characteristics should be recorded for running processes and services, like the loading of 

non-Microsoft DLLs into services.exe, lsass.exe, or explorer.exe or processes launched 

from user and temp directories. Determining the running processes that are not executing 

from the operating system directory may be a valuable script for live production ICS 

systems. 

An excerpt from this thesis’ initial ICS running process attribute whitelist is 

shown in Figure 10. Using the command-line, WMIC queries should be structured to list 

all processes and services whose name or display name is not equal to those listed within 

an external lightweight file. Results from all hosts should be counted by unique process 

and output to a hypertext markup language (HTML)-formatted table. 
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Figure 10.  Excerpt from this thesis’ ICS process and service attribute whitelist 

The commodity malware used for the Monju reactor compromise used malicious 

implant code run by non-malicious trusted code, similar to DLL search-order hijacking 

with a signed executable [50]. Because the streaming media player service downloaded a 

malicious update, cleverly named as the setup for the beta version of the player, the 

malicious modules all ran at the same privilege as the legitimate streaming media player 

process. 

Special attention should be paid to limit processes that are installed and listening 

on multiple boxes which, if compromised, provide access to multiple hosts [63]. With 

fewer systems and processes running than traditional IT networks, it should be possible to 

identify anomalous processes running in control centers using WMIC with the /node 

switch for remote hosts and a well-structured central query. 

5. File System Sabotage 

The malware used at the Monju plant hid itself with double file extensions, 

padding .dll files as .tmp and .pdf files [50]. Running a file-type classifier such as the 
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Linux “file” command or detecting extension mismatches in system or temp directories 

can help to identify previously-unknown malicious files. Not only can analysis be 

conducted on the hosts for these extension mismatches, but also within the network 

traffic captures. 

While rare file extensions may be more common within ICS networks due to the 

systems’ specialized function and regular dependency on proprietary software, isolating 

non-standard software associations may help identify file types that have been registered 

to start with malicious programs. Additionally, the Windows registry debugger value can 

be set to hijack file associations to execute them with malicious software. This is 

accomplished by setting the debugger string value within the registry’s image file 

execution options for a given executable and can be achieved with a single command. 

The Mariposa malware, a variant of which has been found on ICS networks, and 

several other well-known malicious programs copy binaries into the C:\RECYCLER 

folder. Specifically, Mariposa copies a file called dllrun32.exe, but finding any non-

deleted files in the RECYCLER or newer $Recycle.Bin directories may be of interest in 

assessing the security of the ICS domain. All files in C:\$Recycle.Bin\(SID)\* should 

have filenames that start with a ‘$’. The recycling bin may also contain interesting 

recently-deleted data, so it should be checked for .exe, .rar., .zip, and .txt extensions to 

consider files for forensic recovery. 

Although compressed archives may be common at some critical sites for 

packaging large amounts of data to move between segmented networks, the presence of 

anomalous compressed archives on ICS file systems has been linked to malicious activity 

and thus is included in this method. The logs of antivirus and other system scanning 

solutions may include historical information on encrypted compressed archives that could 

not be opened and inspected at a previous time, even if those archives no longer exist. 

During the Monju reactor’s infection, a self-extracting compressed .rar archive 

was used to deliver components [50]. Shamoon used compressed archives on the network 

to package reconnaissance data including hostnames and IP addresses (hostnames.rar, 

ips.rar) and also to deliver malicious tools like Windows credential editor (wc.zip, 
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w64.zip). Even limited ICS hardware can run the WMIC command with 

path=cim_datafile and when passed a WMIC query language (WQL) “where” clause for 

the desired extensions should be able to list all compressed archives on Windows hosts in 

the environment. 

Automated file listing and property checks can also include the auditing of certain 

applications like Windows Sticky Keys (sethc.exe) and Windows Utility Manager 

(utilman.exe) that are often replaced for privilege escalation and malicious persistence. 

These files generally require local access to modify but they are launched with specific 

keyboard sequences with administrator privileges. Another file listing trick that malicious 

users can exploit is the way Windows handles unquoted executables. If paths include 

spaces, such as ‘C:\Program Files\’ or ‘C:\Documents and Settings\,’ and references to 

these locations are missing the quotes around the full path, Windows will  separate file 

items at the spaces. For the examples provided, C:\Program.exe and C:\Documents.exe 

would be executed if those files existed and references were missing fully-quoted paths. 

Auditing for unquoted executable usage can be conducted quickly with few false 

positives expected. 

6. Internal Network Lateral Movement 

Adversaries attempt to transition through internal networks to gain control or 

access on a system inside the target security zone from a network presence on a lesser 

security zone. Stuxnet accomplished this lateral movement by propagating over network 

shares, exploiting a printer-spool vulnerability, and through Windows remote procedure 

call (RPC) commands [39]. Stuxnet enumerated user accounts on the computer and 

attempted to explicitly login with the user’s credential token to all network resources and 

execute itself on remote shares. If Stuxnet determined that the ADMIN$ share was 

accessible, it repackaged the malicious code with the latest configuration data block and 

copied itself to the share with a .tmp filename. A network job was then scheduled to 

execute the file two minutes later. Shamoon also copied itself to accessible network 

shares then, if successful, executed itself remotely. Network shares and shared printers 
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make attractive targets to span network zones so the toolkit should attempt to identify 

these pathways on ICS networks. 

A module of Gh0st RAT used at the Monju plant allowed for peer-to-peer 

communications to further propagate through the target network [50], so processes 

listening or established internally on unexpected ports may identify malicious 

infrastructure. 

Internal lateral movement can also appear as many flows from a single 

workstation to others that normally do not communicate, especially over ports 139 and 

445. If logs are available, Event ID 552 in the Security event log may help identify 

accounts and systems used to conduct this activity, and these can then be filtered to 

isolate malicious behavior and lateral movement. 

7. Portable Media Exploitation 

The creators of Stuxnet probably used portable media devices for the initial 

infection vector, due to the Microsoft Windows shortcut ‘LNK/PIF’ automatic file 

execution vulnerability [39], allowing auto-execution from USB drives. Also, the 2012 

power generation facility compromise and the turbine control network Mariposa infection 

published by ICS-CERT resulted from employee and contractor usage of infected USB 

drives [48]. Mariposa is known to use the AutoRun string to spread via USB [67]. ICS 

network hosts should be audited to ensure that AutoRun is disabled in the registry for 

portable media and unknown drives or devices. On Windows XP and below, this setting 

can be found in the Policies\Explorer\NoDriveTypeAutoRun keys within 

HKEY_LOCAL_MACHINE and HKEY_CURRENT_USER in the registry, so 

extraction and interpretation of these values from the command-line should be pursued. 

Furthermore, most current operating systems and even some legacy systems 

provide queryable records of inserted portable media devices. Custom scripts can be 

created to check USB device connectivity, make and model of previous devices, and 

other metadata to determine if ICS network security policies are being followed and if 

malicious portable media exploitation has been performed. If the script is executed across 

multiple nodes using WMIC, statistical analysis can correlate unique identifying registry 
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values in HKLM\SYSTEM\CurrentControlSet\Enum\USBSTOR. Windows generates 

and stores a unique instance identifier, often the device’s serial number, as a subkey in 

the registry and stores the InstallDate, LastArrivalDate, and LastRemovalDate as 

Property IDs 0x0064, 0x0066, and 0x0067 respectively. The container identifier can be 

cross-referenced with other variables elsewhere in the registry to determine if AutoRun 

was enabled and to find the specific drive label. This method should allow the ability to 

categorize portable media characteristics such as vendor and device model and timeline 

each unique device’s usage across the ICS network.  

8. User Activity Abnormalities and Remote Access Abuse 

Malicious attackers often create user accounts or leverage stolen credentials for 

pre-existing accounts to conduct their desired actions. User accounts are difficult to 

manage on segmented networks with custom network architectures at each site for 

synchronizing active directory and the domain controller with the business network. It is 

expected that there may be some unused and incorrectly-configured accounts on ICS 

systems since user access may be more difficult to audit than on other systems. With 

comparatively few nodes on an ICS network, a full listing of user accounts can quickly 

and automatically be analyzed for various traits using command-line tools. Host-based 

artifacts, and the corresponding log events if available, should be analyzed for locked-out 

accounts, users who have never logged on, passwords that never expire, guest accounts 

belonging to a group, blank administration passwords, and the creation of new user 

accounts and their naming convention, and simultaneous sessions across multiple 

machines to discover possible compromised user accounts and intrusion pathways. 

One specific behavior that a toolkit should attempt to identify is suspicious 

activity when users are not at work. Many of the studied incidents were either detected or 

later correlated with off-hour access into network. Leading up the Shamoon attack, 

persistence was established and surveillance was regularly conducted during off hours. 

This is a consistent trait for many sophisticated intellectual property theft intrusions on 

the business network as well, with over 97% of a sophisticated nation-state’s 1,905 

observed remote desktop protocol (RDP) infiltrations occurring during that country’s 
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standard business hours, which are off-hours for the United States. For ICS networks, 

there may be a specific time window that any organization would not expect human 

interaction with process control. Although certain situations may necessitate after-hours 

remote access to an ICS network, these may be identified by plotting remote interactive 

logons (type 10) against time of day, and likely the anomalies could be explained by the 

staff. 

Identifying user behavior anomalies has become more challenging with modern 

SCADA engineers’ growing expectation of and reliance on remote access to ICS systems 

at other locations. The Worcester airport intrusion was conducted by abusing dial-up 

remote access intended for engineers. Since some ICS networks still use dial-up modems 

or wireless data for direct or secondary RTU access, these access points may provide 

valuable anomalies from normal engineer access. The Shamoon attackers enumerated 

RDP servers and attempted to use several legitimate tools, including PSExec, Net, and 

Mstsc to exploit trusted access pathways. ICS-CERT did not release which technologies 

specifically were used in the May 2014 sophisticated remote access abuse intrusion [26], 

however companion alerts issued reference RDP, virtual network computing (VNC), and 

Sysinternals tools including PsExec. To use any Sysinternals tool you must accept  

the EULA on that system which leaves a record within the registry, which presents  

a unique and quick way to determine these tools’ presence from the command-line 

without searching the entire drive. To do this, the value should be checked for 

Software\Sysinternals\PsExec\EulaAccepted in the registry. 

According to a document released by NERC, the Slammer worm that affected the 

Davis-Besse nuclear plant also downed another electric utility’s critical SCADA network 

after moving from a corporate network, through a remote computer, to a VPN connection 

to the control center LAN [69]. VPN logs can be compared across hosts within the ICS 

network and across network zones. Information can be extracted from these and other 

related files to identify anomalous and possibly malicious usage. 

Separating legitimate use of trusted remote access tools from malicious use is 

challenging, but several distinct properties of ICS networks may assist in developing a 

technique to reliably accomplish this. Despite being highly valuable for analysis, detailed 
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logging of remote access events in the ICS domain cannot be expected at all sites, and 

thus relevant forensic artifacts for these access methods must be collected from various 

locations in the file system using compatible command-line tools. 

D. CONSOLIDATED TACTIC IDENTIFICATION 

If an unauthorized user had previous access or currently maintains malicious 

persistence on an ICS network using any of the described adversary tactics, forensic 

artifacts should be available for careful collection and analysis. 

Malicious tampering with ICS field devices communicating over industrial 

protocols may result in anomalous device operation and unconventional communication 

patterns. This activity should be identifiable with statistical analysis of function codes 

even without prior knowledge of the specific ICS site due to minimal network noise and 

field device behavioral expectations. Analysis should be conducted primarily on ICS 

network traffic with additional device functionality fingerprinting assistance from host-

based queries. 

Network traffic should be examined for attempted and established external 

connections, since client-side attacks require access from outside the ICS network. 

External connection and traditional protocol analysis should also reveal beaconing 

commodity malware as well as weak security practices that can or have been used as 

adversary access channels, with geolocation helping to triage previously-unknown 

connections. Host-based artifacts should be used to support historical external access. 

Several known locations used for malicious persistence that survive system 

reboots, such as specific registry keys, system startup locations, and scheduled tasks 

should be examined for content that is unexpected on critical networks and also 

correlated among devices to identify software anomalies. Host processes and their 

imports should also be examined to ensure only expected minimal processes on critical 

nodes. Popular file system locations should be carefully examined to identify data-

exfiltration staging areas and the modified files and extensions used for privilege 

escalation. The startup persistence, system process, and file system artifacts should be 

compared across hosts and analyzed with an ICS-specific attribute whitelist and blacklist. 
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For additional vulnerable ICS network access vectors, host-based artifacts should 

be extracted that provide context on internal network pathways, portable media usage, 

and remote access abuse. To increase analytical confidence in these findings, these 

forensic attributes should be checked with on-site ICS engineers and compared with 

network traffic to isolate malicious behavior from observed anomalies. 
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V. EXPERIMENTS 

A. DATASETS 

A goal of this research was to design a reliable and effective ICS malicious 

activity identification toolkit. This chapter provides an analysis of the toolkit’s operation 

and its investigative strengths and weaknesses. Tests were conducted on a variety of data 

sources, including voluntarily-submitted and publicly-available ICS network traffic as 

well as researcher-provided sophisticated advanced persistent threat (APT) malware and 

packet captures. 

When sufficient technical data was unavailable on adversary tactics, techniques, 

and procedures (TTPs), actions were recreated on an array of virtual machines configured 

with a variety of operating systems and software representative of a typical ICS 

installment. The resulting forensic evidence was used to validate and enhance the host- 

and network-based scripts. 

B. INITIAL RESULTS 

The prototype toolkit consisted of eight substantial command-line utility scripts 

representing each adversary tactic researched, with several supporting batch scripts for 

adhering to ICS device limitations and formatting results. Although Bro is open-source 

software that includes many built-in functions and analyzers, several custom Bro network 

programming-language scripts were written that extend the coverage and capability of the 

methodology. I have authored all described host and network-forensic artifact-collection 

scripts for each specific adversary tactic explained. I have matured and improved the 

toolkit’s scripts over time and several excerpts and iterations have demonstrated an 

ability to collect forensic details within the operational constraints of real-world sensitive 

environments at various critical infrastructure sites. The most recent versions of the file-

sabotage, process injection and hijacking, and internal network lateral movement host-

based scripts have not been tested on ICS networks but have performed as intended in the 

simulated environment. 
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The preliminary findings from testing the toolkit can be used to assess the 

methodology’s performance and adherence to unique ICS constraints. The scripts will be 

continuously improved as more data is processed so that observed ICS activity and 

potential pathways can be directly translated into the toolkit’s growing ICS forensic 

attribute whitelists and blacklists. 

1. Operation within Constraints 

To operate within the ICS domain without affecting ongoing operations, all host-

based tools had to be run at the lowest priority level to allow process control functions to 

operate at full availability. This was accomplished by using the built-in Windows base 

priority function to force the process and thread priority to the lowest possible level [70]. 

Attempts to lower the host script’s priority from within by referencing its own process ID 

(PID) produced inconsistent results. The most successful technique was to launch all 

host-based scripts from within a separate wrapper function that reliably set the priority 

for all spawned processes. Set at idle priority, the scripts only use free processing cycles 

and do not interrupt any functions. Idle priority is normally used for lightweight software 

such as desktop screensavers and applications that only require periodic updating. Within 

the master script, the user is given the option to increase this priority level if faster results 

are desired and the system can tolerate it. All host-based scripts were successfully 

launched at the lowest priority level and monitored to ensure that they adhered to this 

constraint (Figure 11). Additionally, disk reads and writes were minimized through 

similar process monitoring to safeguard against retrieving too much data, which could 

overwhelm a resource-constrained ICS system. 

 

Figure 11.  Host-based scripts running at lowest priority 

The command-line utilities employed on the hosts were selected not only based 

on their ability to produce reliable results for identifying each adversary tactic, but also 
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for their support on legacy operating systems. The logic built within the scripts 

successfully refrained from executing on unsupported versions by using the VER 

command and checking the %OS% and %COMSPEC% environment variables. The 

WMIC command, which allows for detailed system management from the command-line, 

can be run with the “/node” option enabled to run the host scripts across multiple systems 

and centrally collect the data, while generating minimal network traffic. 

The network-based toolkit successfully functioned without the need for active 

interaction with devices. This was confirmed by replaying historical network traffic 

through the scripts to produce the results, while running tcpdump to intercept and display 

packets on the system running the network-based scripts. Although not a requirement, the 

network-based toolkit performed with no delay while running on a consumer-grade 

laptop, demonstrating that the toolkit is flexible enough to run on any platform 

compatible with Bro. Custom Bro scripts should work under all possible constraints in 

the ICS network because they are passive by design. 

2. Explanation of Host-based Toolkit Functions 

Figure 12 shows a use and compatibility matrix for this research’s host-based 

toolkit, illustrating all commands used and the operating system support for each 

command. The core utilities were used in all scripts and the individual commands 

beneath were only needed for individual adversary tactic identification scripts. Of note, 

WMIC is heavily used in this toolkit and while it is not included by default in OS 

versions prior to Windows XP, Microsoft released a package that allows it to function 

with legacy versions starting with Windows 95. Executing this package on remote 

machines requires some additional steps to ensure the software is running [71]. Any tools 

that require the installation of additional resource kit packages have been noted on the 

Figure 12 [72]. REG was used as a quick, compatible method to query the Windows 

registry for specific keys related to the eight adversary tactics within all scripts. The 

FIND command and the more demanding FINDSTR command when necessary were 

used to incrementally search for values and regular expression strings within the output 

of several other commands. WEVTUTIL was included for its ability to quickly isolate 
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relevant event log files, but its use is optional since the kit was designed with the 

expectation that WEVTUTIL would not be supported and that the target system’s event 

logs would be insufficient. 
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WMIC  *  * * *      
REG  *  * * *      
FOR            
FINDSTR  *  * *       
FIND            
WEVTUTIL                   
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ARP            
IPCONFIG            
NETSH                   
NETSTAT            
TYPE            
SC                   
SCHTASKS                   
BITSADMIN                   
DRIVERQUERY                   
TREE            
DIR            
ASSOC                   
FTYPE                   
NBTSTAT                   
DOSKEY            

  *Note: OS version requires installation of additional command‐line utility package 

Figure 12.  Host-based command usage and operating system compatibility 

The additional command-line utilities used only in selected scripts are presented 

at the bottom of Figure 12 in the same order as the corresponding adversary tactic is 

described in this thesis. Most utilities are run with specific, tested command line 

parameters to ensure stability of hosts. The ICS field device script used ARP, 

IPCONFIG, and NETSH to extract MAC addresses from the local network, host 

machine, and in-range wireless devices, respectively. The external connection host-based 
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script used IPCONFIG, NETSTAT, and TYPE to display the DNS cache, correlate a host 

process to network behavior observed, and to output cookies from file paths determined 

by Windows version. 

While registry persistence was checked entirely with the core REG command, the 

startup portion of the persistence script employed TYPE to output contents of each host’s 

startup folders and SC to query services that automatically restart or trigger based on 

failure conditions. The scheduled task portion of the persistence script primarily used 

WMIC but also applied the SCHTASKS and BITSADMIN utilities to output their 

respective scheduled job data to a central report for identification of malicious dormancy 

and privilege escalation attempts. 

The process injection and hijacking script mainly used the core WMIC tool’s 

querying language as well as FIND to identify processes running from %TEMP% or 

%LOCALAPPDATA% and to compare processes and DLL imports with ICS artifact 

whitelists and blacklists. The process injection script also leveraged DRIVERQUERY to 

display details about loaded unsigned drivers as well as a consolidated list of certificates 

used for the drivers that were signed for easy analysis. 

The file system sabotage script harnessed WMIC to parse the cim_datafile for 

compressed archives along with TREE and DIR with special parameters to check for 

unquoted executables, recently created binaries, and anomalous files in the RECYCLER. 

The file system sabotage script also used REG to query SOFTWARE\Classes and 

provide anomalous debugger and image file execution keys. The file system sabotage 

script combined results of ASSOC and FTYPE to output file extensions and their linked 

programs for anomalous extensions that do not exist in the baseline operating system. 

The internal lateral movement script relied on WMIC to provide various shared 

resources such as printers that could span network zones. The same script also used 

NETSTAT to check potential services in use and the NBTSTAT tool to display cached 

historical NetBIOS connections. 
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The portable media script employed only the core utilities to extract currently- 

and previously-connected portable devices, extracting uniquely-identifying data from 

various registry entries to correlate their usage across all hosts. The script also extracted 

AutoRun settings from various forensic locations to determine portable media 

propagation risk. 

The user behavior and remote access abuse script largely used WMIC and 

WEVTUTIL (if available) to first search for specific Event IDs if present, then query 

TerminalServices, RemoteConnectionManager, and LocalSessionManager for RDP 

artifacts in the absence of security event log data. The script was built with input 

parameters to whitelist certain time periods so as to narrow results to specified anomalous 

off-hours. The user behavior and remote access abuse script also used DOSKEY to 

extract explicit command-line usage from memory. 

3. Concerning Findings 

The network-based scripts to passively identify external communication paths 

from the ICS network proved to be valuable and reliable. External connections from the 

ICS network were quickly identified in the studied data that provided an understanding of 

how the network was configured, such as a company’s interconnection of an ICS network 

with the DNS and network time protocol (NTP) servers on their business network in 

Figure 13. Other systems attempted outbound connections to the Internet over NetBIOS 

and other non-ICS protocol ports. In addition, pathways and network traffic fragments 

were identified between several devices and 143.127.102.40 in Cupertino, CA, 

Symantec’s LiveUpdate server for virus definitions; this was further validated  

when the host-based scripts extracted securityresponse.symantec.com and 

liveupdate.symantecliveupdate.com from the DNS cache. A separate ICS network traffic 

sample showed systems attempting to connect to guru.avg.com and bguru.avg.cz to 

update the Anti-Virus Guard (AVG) antivirus product. In yet another sample data set, the 

host- and network-based scripts quickly revealed other attempts to product update 

websites for multiple ICS equipment vendors. Although the inconsistent attempts to 

external networks in this data were system misconfigurations and attempted product 
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updates, this analysis could have similarly identified beaconing malware and malicious 

external command and control attempts.  

 

Figure 13.  Identified communication paths from ICS network 

The real-time visualization of attempted and established external network 

connections from the ICS domain provided value once the automated offline analysis and 

packet capture (PCAP)-to-JSON conversion scripts were completed. The jVectorMap 

representation of one real-world ICS network’s external connection attempts is shown in 

Figure 14. When foreign IP addresses are included in the JSON data, the map was 

programmed to display a world map. 

 

Figure 14.  External connections output from this thesis’ network-based toolkit 
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HTTP protocol analysis revealed interesting characteristics unique to ICS 

networks. Built-in Bro IDS alerts were triggered because some traffic samples included 

invalid HTTP methods. In those cases, vendors had configured their product to use a 

[VENDORNAME]_POST method and used HTTP as a convenient transport protocol. 

Other analysis showed HTTP access to DLL files and posting values directly as variables 

(/[vendor]/[vendor].dll?v=update). These ICS device HTTP traits will be added to the 

growing whitelist of atypical vendor implementations of traditional network protocols. 

USB drive insertion data is of immediate interest during incident response and is 

critical for sites whose network security policies disallow portable media usage. Figure 

15 shows the output of the host-based script when run against a test system with many 

USB drive insertions. In the prototype toolkit there are permission issues accessing the 

Properties subkey which contains dates that were originally going to be plotted on a 

timeline. This will be fixed in the next iteration, and the AutoRun flag and the user who 

accessed the drive will also be displayed to further assist security teams. 

 

Figure 15.  USB insertion script output on test system 

The above results constitute suspicious data of moderate confidence. As more 

data is processed, such suspicious findings can be further separated into confirmed 

malicious findings in the form of a blacklist, and moderate-confidence suspicious 
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findings will be used to maintain a more flexible ICS behavioral greylist that may be only 

indicative of compromise when combined with other observed activity. 

4. Valuable Discoveries 

The initial version of this toolkit provided valuable configuration information 

about a particular site as well as a more general understanding of industry ICS network 

installments across multiple sets of data. Execution from both the command-line of the 

system and on live or historical network data provides new observational capabilities. For 

instance, Figure 16 shows remote querying of an endpoint to identify connected 

equipment. This host-based script was further improved to show in-range wireless access 

points and previously wireless connections, if any. 

 

Figure 16.  Host characteristics extracted from command-line utilities 

Although host-based command-line device enumeration will be valuable in 

environments without historical network traffic captures, the network scripts created in 

Bro demonstrated far more utility and flexibility in this area. The network-based 

enumeration and correlation across several nodes is completely passive and device-

agnostic. Bro is built around real-time generation of logs for immediate viewing and 

alerts, but its language supports a variety of outputs and data structures. Traditional 

stream-based output is supported in the ICS device-fingerprinting code created for this 

thesis, but the real utility of the toolkit is the comprehensive collection of device 
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information in scalable arrays and searchable sets of addresses that associates known 

device information together automatically, without having to further parse the output. 

The script pulls MAC (physical) addresses and IP (logical) addresses from ARP 

requests and replies, and extracts MACs, IPs, and hostnames from DHCP request, 

inform, and discovery packets. MAC addresses were passively observed for 64% of 

devices on the LAN and 100% of the hardware vendors were identified from those MAC 

addresses. 100% of the internal device IP addresses were collected, which is to be 

expected for TCP/IP to properly function, and none were identified as dual-homed  

(a system having multiple network interface cards and thus multiple IP addresses per one 

MAC address). Only 12% of hostnames were observed in DHCP traffic, likely due to the 

prevalence of static IP assignments in critical networks. This was a known consideration 

during network toolkit creation, and so the script includes an event to trigger when a DNS 

address (type A) reply is to an internal IP address that does not yet have a known 

associated hostname and for which the corresponding query’s subdomain substring is 

used for the hostname. Using both DHCP and internal DNS extraction, 41% of 

hostnames were identified. These hostnames have been removed Figure 17 to keep the 

processed data private. According to Bro’s built-in operating system analyzer, the 

majority of operating systems in the data were outdated and unsupported versions of 

Microsoft Windows, validating the focus on those systems with the host-based kit. 
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Figure 17.  Summary of host characteristics extracted from network data 

The toolkit extends the built-in fingerprinting with some initial ICS protocol and 

supervisory device trait-matching. For instance, based on publicly-available vulnerability 

data released for Wonderware’s SuiteLink service [73], any Windows OS host listening 

on UDP port 5413 with connections to one or more systems that speak other ICS 

protocols is flagged by the script as likely a WonderWare InTouch HMI. This rough ICS 

device cataloging capability should grow as more artifacts are ingested and processed. 

For proper comparison, 24-hour periods of Modbus and DNP3 network traffic 

captures from several critical infrastructure sectors were analyzed and correlated. One of 

this thesis’ Bro scripts attempted to identify ICS protocol abnormalities while another 

script attempted to fingerprint devices’ specific roles in the ICS network based on their 

register values and their function and exception codes. The first script’s analysis 

indicated that the ingested data did not contain any protocol convention anomalies or 

suspicious ICS function code usage, which may indicate malicious tampering or field 

device modification. All examined ICS protocol traffic contained only register reads and 

writes, which was confirmed through packet analysis outside of the toolkit, so the 
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extraction of potentially malicious activity based on anomalous protocol events was not 

tested.  

Analyzing the same source data, the second Bro script’s output did not indicate a 

significant correlation between ICS protocol function code patterns or register-boundary 

values and the field device’s role (e.g., HMI, RTU, PLC). This may also be a result of the 

limited ICS device functions observed. Frequency analysis of observed Modbus and 

DNP3 function codes is provided in Figure 18. Across all samples, slave field devices 

had an average of 5.5 registers. Register ranges varied significantly even on a single 

device, as in one case a device’s register only changed by within a range of one across a 

24-hour period but the device’s other register had a range of 65,369. The average low 

boundary value for registers was 8,594 and the average high boundary was 37,248, but 

the protocols are device-agnostic so more meaningful anomalies or further indications of 

malicious behavior could not be extracted from the field devices’ numeric register-values 

without knowing the specific processes they controlled. There are likely values for field 

device register limits and metrics so alerts could be created based on manually-input 

expectations. Alternately, future iterations of the Bro script may record register changes 

as a percentage of the current values. The extraction and correlation of ICS protocol 

functions did however support the assertion that ICS networks have a high signal-to-noise 

ratio since anomalous function codes, exception codes, and malformed packets should be 

significantly distinguishable if present in captured data. 

 

Protocol Function (Code)  DNP3  Modbus 

DNP3 Confirm (0)  0.02% 0.00% 

DNP3 Read (1)  99.98% 0.00% 

Modbus Read Coils (1)  0.00% 56.26% 

Modbus Read Holding Registers (3)  0.00% 25.90% 

Modbus Read Input Registers (4)  0.00% 13.57% 

Modbus Write Single Coil (5)  0.00% 3.01% 

Modbus Write Multiple Registers (16)  0.00% 1.26% 

Grand Total  100.00% 100.00% 

Figure 18.  ICS protocol frequency analysis in dataset 
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C. TOOLKIT LIMITATIONS 

This section covers several weaknesses in the current version of the methodology, 

including examples of tool-specific inadequacies and a survey of observed type I and 

type II errors in the automated analysis. 

1. Toolkit Deficiencies 

One significant limitation of the approach is its inability to calculate 

cryptographic hashes to verify authenticity of files due to the absence of built-in 

Windows command-line hashing. Since firmware is not commonly digitally signed for 

ICS devices, hashes should be computed to compare against manufacturer data provided 

in documentation or online. Several community tools are available and Microsoft 

released a command-line hashing utility (FCIV.exe) in 2004, but it is not built into the 

Windows OS versions examined. A PowerShell script can likely accomplish 

cryptographic hashing but that limits compatibility and a scripted cryptographic routine 

may overly tax the limited resources. Bro’s file framework is impressive and can 

passively categorize, extract, and hash all files sent in packets, so modification and 

extension of Bro’s file framework will aid future firmware analysis functionality. 

Several studied adversary attack techniques only produced accurate forensic 

artifacts when the same command-line utilities used by an attacker were also used to 

query the host by a responder. This suggests the need to investigate command-line utility 

outputs before claiming full coverage. For example, within the task-scheduling 

persistence identification script, simulated malicious tasks for privilege escalation and 

reboot persistence created on a Windows XP host with the AT command were only 

revealed by WMIC, and tasks created with SCHTASKS command were only revealed by 

querying SCHTASKS. On Windows Vista and up, a third built-in tool, BITSADMIN, 

allows scheduling of malicious tasks that are only revealed by listing from BITSADMIN 

and no other tools, as illustrated in Figure 19. 
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Figure 19.  Three command-line tool queries with mutually-exclusive results 

Although this host script does query each service and identifies jobs scheduled 

from all methods, the output is difficult to parse and thus a more reliable, central  

location should be used to find these tasks. Forensic locations such as 

%windir%\Tasks\SchedLgU.txt for Windows XP and below, and Microsoft-Windows-

TaskScheduler%40Operational.evtx for Vista and above, may centrally store this data for 

all tools and the scheduled task persistence identification script can extract data from 

those locations. 

Separating malicious access from trusted access was difficult in the ICS 

environment despite the high signal-to-noise ratio. While the toolkit reliably 

distinguished automated device activity from human-initiated activity, further separating 

trusted user behavior from malicious attacker behavior was challenging with limited 

historical visibility and inconsistent logging on the systems analyzed. Some promising 

data was found outside of command-line tools and parsed event logs, such as within the 

*.rdp files on the host and within parsed remote access network traffic, but the initial 

scripts were unable to automatically extract that data in a meaningful way that applied to 

multiple sites. 

Similarly, malicious internal lateral movement was difficult to identify in this 

environment due to the number of accounts with administrative privileges and ICS 

vendors’ pervasive usage of server message block (SMB) and NetBIOS for access to 
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shared resources. This should diminish with the development of more robust vendor-

specific whitelists. 

2. False Positive Errors 

Type I errors, or false positives, occur when non-malicious is identified as 

malicious activity. The collection of large datasets without honed capabilities to analyze 

the data resulted in a high number of false positives.  

False positives were more likely to occur when only host or network data was 

available. Ideally, toolkits should try to determine where data went that left a host or what 

process was running that was using a suspicious protocol. In these experiments, some 

host-based activity that was flagged as malicious was SCADA engineers moving laptops 

between network zones. It was assumed that a host remained in an environment, so 

laptops moved between zones generated several suspicious traits, such as using many 

fully-qualified domain names that did not actually represent external attempts from 

within the ICS network. But since connecting laptops to and from the ICS domain is not 

advisable, these may not be considered false positives. 

Within one data set, an indication of external information exfiltration over an ICS 

protocol, OASys DNA, was actually a Type I error that resulted from incorrect 

programming. An external connection identification Bro script did not originally include 

255.0.0.3 in its whitelist, a reserved multicast address. In another set of data analyzed, a 

router was configured to send a response back to attempts to connect out of the ICS 

network. The toolkit’s connection state logic has since been reviewed and the IP subnet 

whitelist now correctly reflects all intended requests for comments (RFCs) from the 

Internet Engineering Taskforce (IETF). 

Within the network-based toolkit results, more activity was observed than 

expected with Telnet, NetBIOS, SNMP, and HTTP protocols. Specifically, many ICS 

systems were observed using embedded HTTP functionality for diagnostics and 

monitoring. The analysis of unexpected HTTP user-agent strings requires a more 

comprehensive understanding of the ICS software that uses HTTP, or the use of filtering 
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by unique properties like session duration, so that fewer anomalies are highlighted to the 

toolkit’s user. 

3. False Negative Analysis 

A Type II error, or a false negative, is when malicious activity existed but was not 

detected. Because none of the data included a confirmed compromise, errors of this 

category were difficult to find. It is important, to note that, when searching for malicious 

attackers, the old criminal profiling aphorism “the absence of evidence is not the 

evidence of absence” applies. 

One possible design flaw that could lead to false negatives is within the 

geolocation and visualization of external connections. Several samples included external 

attempted and established connections to cellular data devices. In one instance, a SCADA 

server was communicating with several dozen Verizon devices with no uniform IP 

address assignment, which could reflect sites replacing old direct dial-up access with 

cellular data connections. Geolocation will never be able to place these devices 

accurately on a map since they do not have set locations and are assigned in pools by 

mobile providers. Although separate online whois queries can be conducted and collated 

for some assistance, an adversary could blend into this access pathway or maintain 

persistence by beaconing out of an ICS network to an adversary-owned mobile device 

from the same provider. 

Additional false negatives may have occurred in the studied data due to the lack 

of built-in Bro support for ICCP, OPC, and some other observed proprietary ICS 

protocols. However, these protocols communicate in cleartext like many other supported 

protocols (e.g., Telnet, FTP, MySQL, and HTTP), so more work needs to be done on the 

network toolkit to include the parsing of cleartext ICS protocols. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. IMPACT 

This thesis described the need for a forensic capability tailored to industrial 

control systems. It then described and tested several techniques for identifying and 

analyzing potential malicious activity and adversary access pathways within ICS 

networks. This resulted in the creation of several tools to be used for live production ICS 

forensics and suggested some approaches to building high-confidence indicators of 

unauthorized access. ICS networks do provide good signal-to-noise ratios for behavioral 

anomaly detection. The need for tailored tools to identify potentially malicious access 

pathways has been suggested by this work and the feasibility of such tools has been 

established with the prototype host- and network-based toolkit. 

Security assessment and incident response teams can use the approach to analyze 

critical devices in an environment with minimal irrelevant data, then trace those findings 

back into the business network instead of the other way around. The tools should assist in 

making more confident intrusion judgments when malicious activity is suspected in the 

ICS environment. With the careful selection of compatible tools, and a technique that is 

passive and forensically cautious, these methods can be easily incorporated into many 

organizations’ security processes. 

B. FUTURE WORK 

Due to the relatively long life cycle of systems in the ICS domain and the current 

compatibility with Windows 8 systems, this technique is expected to be functional for a 

while on Microsoft operating systems. However, Linux compatibility is needed and work 

has already begun on translating the host-based examination commands for Linux. The 

WMI core application has been ported to Linux, which presents a desirable host-platform 

shift since Bro runs on Linux. If the host and network tools are executed from the same 

system, compatibility should expand and the ability to cross-reference host and network 

data should improve greatly. Adding agentless querying of real-time operating systems 

such as VxWorks, Windows CE, QNX and embedded Linux should also be pursued. 
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The host-based toolkit can be run on each host, transferring the HTML-formatted 

output to a write-once CD or other protected media. The toolkit can also be run on 

multiple hosts and centrally-collected, but this has only been tested on small, closed 

networks, and already is generating significant amounts of data. If both host and network 

data can be centrally analyzed, the data will require improved structures to ensure 

performance is still acceptable. This approach of central collection and analysis of host 

and network data allows additional features such as rootkit identification to become 

possible by comparing host and network data. For example, if a port is communicating in 

network traffic but not showing on a host’s netstat querying, a rootkit may be hiding it 

from the Windows API. 

The migration to a NoSQL document database for forensic data management 

would increase scalability and reduce endpoint processing cycles even further. 

Alternately, Bro may be capable of ingesting the host-based forensic output instead of a 

NoSQL database and it could be used as a source-agnostic state machine to process 

events. More interactive mapping of specifically-filtered data could be valuable. 

Examples are the data-driven documents (D3) JavaScript framework to depict 

relationships between collected artifacts, the portrayal of host anomaly timelines, and 

visual incident triage beyond pure geospatial representation. 

Future toolkit development should pursue the inclusion of network policy 

checklists for each site to determine the logic used to find anomalies. To aid in 

understanding potential adversary pathways, the toolkit should also include the collection 

of or manual entry of network interconnect information, such as firewall logs, between 

zones. It may be possible to identify the domain interconnection type from passive 

network traffic already collected, since mechanisms such as data diodes have unique 

communication patterns. 

Additional offline databases of security information could be incorporated beyond 

geolocation data, vendor information, and ICS protocol identification. Bro now has an 

offline autonomous system number (ASN) lookup function to determine border gateway 

protocol (BGP) routing and Internet Service Provider (ISP) information. 
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The malicious activity blacklists and whitelists used were relatively small and 

should be expanded. The total number of ICS-specific elements within the current lists is 

less than 200 as collected from observed ICS hosts in industry and online documentation 

(Figure 20). ICS hardware vendors could be contacted directly as an authoritative source 

to assist in compiling attribute whitelists for their equipment. 

 

Figure 20.  Content distribution of initial ICS-specific whitelist 

Future testing of the toolkit should be conducted on data that includes known 

malicious activity attempts. To facilitate this, development of ICS network honeypots 

should be pursued with tools like Conpot, released in 2013 by the Honeynet project to 

simulate ICS networks [74]. 

C. CONCLUDING REMARK 

As the increasingly connected systems that power modern society’s critical 

infrastructure are subject to more scrutiny and attacks, those systems’ owners and 

operators will need novel techniques for assessing and defending their ICS networks. The 

methodology presented in this thesis has been tested and the supplementary toolkit has 

demonstrated value. The ICS security community would benefit from further funding and 

development of an incident response toolkit to assist in securing our Nation’s critical 

assets. 
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